Merge branch 'feature-normal-science-backport' into feature-temperature-effect-analysis
This commit is contained in:
BIN
.distributions
Normal file
BIN
.distributions
Normal file
Binary file not shown.
@ -1,3 +1,4 @@
|
||||
from .copycat import Copycat, Reporter # noqa
|
||||
from .plot import plot_answers
|
||||
from .io import save_answers
|
||||
from .problem import Problem
|
||||
|
||||
62
copycat/problem.py
Normal file
62
copycat/problem.py
Normal file
@ -0,0 +1,62 @@
|
||||
from .copycat import Copycat
|
||||
|
||||
from pprint import pprint
|
||||
|
||||
class Problem:
|
||||
def __init__(self, initial, modified, target, iterations, distributions=None, formulas=None):
|
||||
self.formulas = formulas
|
||||
self.initial = initial
|
||||
self.modified = modified
|
||||
self.target = target
|
||||
|
||||
self.iterations = iterations
|
||||
if distributions is None:
|
||||
self.distributions = self.solve()
|
||||
else:
|
||||
self.distributions = distributions
|
||||
if formulas is not None:
|
||||
assert hasattr(Copycat().workspace, 'temperature')
|
||||
|
||||
def test(self, comparison, expected=None):
|
||||
print('-' * 120)
|
||||
print('Testing copycat problem: {} : {} :: {} : _'.format(self.initial,
|
||||
self.modified,
|
||||
self.target))
|
||||
print('expected:')
|
||||
if expected is None:
|
||||
expected = self.distributions
|
||||
pprint(expected)
|
||||
|
||||
actual = self.solve()
|
||||
print('actual:')
|
||||
pprint(actual)
|
||||
comparison(actual, expected)
|
||||
print('-' * 120)
|
||||
|
||||
def solve(self):
|
||||
print('-' * 120)
|
||||
print('Testing copycat problem: {} : {} :: {} : _'.format(self.initial,
|
||||
self.modified,
|
||||
self.target))
|
||||
copycat = Copycat()
|
||||
answers = dict()
|
||||
if self.formulas == None:
|
||||
if hasattr(copycat.workspace, 'temperature'):
|
||||
formula = copycat.workspace.temperature.getAdj()
|
||||
else:
|
||||
formula = None
|
||||
answers[formula] = copycat.run(self.initial,
|
||||
self.modified,
|
||||
self.target,
|
||||
self.iterations)
|
||||
else:
|
||||
for formula in self.formulas:
|
||||
copycat.temperature.useAdj(formula)
|
||||
answers[formulas] = copycat.run(self.initial,
|
||||
self.modified,
|
||||
self.target,
|
||||
self.iterations)
|
||||
return answers
|
||||
|
||||
def generate(self):
|
||||
self.distributions = self.solve()
|
||||
57
copycat/statistics.py
Normal file
57
copycat/statistics.py
Normal file
@ -0,0 +1,57 @@
|
||||
# CHI2 values for n degrees freedom
|
||||
_chiSquared_table = {
|
||||
1:3.841,
|
||||
2:5.991,
|
||||
3:7.815,
|
||||
4:9.488,
|
||||
5:11.071,
|
||||
6:12.592,
|
||||
7:14.067,
|
||||
8:15.507,
|
||||
9:16.919,
|
||||
10:18.307
|
||||
}
|
||||
|
||||
class ChiSquaredException(Exception):
|
||||
pass
|
||||
|
||||
def chi_squared(actual, expected):
|
||||
answerKeys = set(list(actual.keys()) + list(expected.keys()))
|
||||
degreesFreedom = len(answerKeys)
|
||||
chiSquared = 0
|
||||
|
||||
get_count = lambda k, d : d[k]['count'] if k in d else 0
|
||||
|
||||
for k in answerKeys:
|
||||
E = get_count(k, expected)
|
||||
O = get_count(k, actual)
|
||||
if E == 0:
|
||||
print('Warning! Expected 0 counts of {}, but got {}'.format(k, O))
|
||||
else:
|
||||
chiSquared += (O - E) ** 2 / E
|
||||
return chiSquared
|
||||
|
||||
def cross_formula_chi_squared(actualDict, expectedDict):
|
||||
for ka, actual in actualDict.items():
|
||||
for ke, expected in expectedDict.items():
|
||||
print('Comparing {} with {}'.format(ka, ke))
|
||||
chiSquared = chi_squared(actual, expected)
|
||||
|
||||
if chiSquared >= _chiSquared_table[degreesFreedom]:
|
||||
print('Significant difference between expected and actual answer distributions: \n' +
|
||||
'Chi2 value: {} with {} degrees of freedom'.format(chiSquared, degreesFreedom))
|
||||
|
||||
def cross_chi_squared(problemSets):
|
||||
for i, problemSetA in enumerate(problemSets):
|
||||
for problemSetB in problemSets[i + 1:]:
|
||||
for problemA in problemSetA:
|
||||
for problemB in problemSetB:
|
||||
answersA = problemA.distributions
|
||||
answersB = problemB.distributions
|
||||
cross_formula_chi_squared(answersA, answersB)
|
||||
|
||||
def iso_chi_squared(actualDict, expectedDict):
|
||||
for key in expectedDict.keys():
|
||||
assert key in actualDict, 'The key {} was not tested'.format(key)
|
||||
actual = actualDict[key]
|
||||
expected = expectedDict[key]
|
||||
174
tests.py
174
tests.py
@ -1,142 +1,62 @@
|
||||
import unittest
|
||||
from pprint import pprint
|
||||
import os.path
|
||||
import pickle
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
from copycat import Copycat
|
||||
from pprint import pprint
|
||||
from copycat import Problem
|
||||
from copycat.statistics import iso_chi_squared
|
||||
|
||||
# TODO: update test cases to use entropy
|
||||
|
||||
# CHI2 values for n degrees freedom
|
||||
_chiSquared_table = {
|
||||
1:3.841,
|
||||
2:5.991,
|
||||
3:7.815,
|
||||
4:9.488,
|
||||
5:11.071,
|
||||
6:12.592,
|
||||
7:14.067,
|
||||
8:15.507,
|
||||
9:16.919,
|
||||
10:18.307
|
||||
}
|
||||
def generate():
|
||||
print('Generating distributions for new file')
|
||||
iterations = 30
|
||||
problems = [
|
||||
Problem('abc', 'abd', 'efg', iterations),
|
||||
Problem('abc', 'abd', 'ijk', iterations),
|
||||
Problem('abc', 'abd', 'xyz', iterations),
|
||||
Problem('abc', 'abd', 'ijkk', iterations),
|
||||
Problem('abc', 'abd', 'mrrjjj', iterations)]
|
||||
|
||||
with open(TestCopycat.Filename, 'wb') as outfile:
|
||||
pickle.dump(problems, outfile)
|
||||
return problems
|
||||
|
||||
class TestCopycat(unittest.TestCase):
|
||||
Filename = None
|
||||
|
||||
def setUp(self):
|
||||
self.longMessage = True # new in Python 2.7
|
||||
|
||||
def assertProbabilitiesLookRoughlyLike(self, actual, expected, iterations):
|
||||
answerKeys = set(list(actual.keys()) + list(expected.keys()))
|
||||
degreesFreedom = len(answerKeys)
|
||||
chiSquared = 0
|
||||
|
||||
get_count = lambda k, d : d[k]['count'] if k in d else 0
|
||||
|
||||
for k in answerKeys:
|
||||
E = get_count(k, expected)
|
||||
O = get_count(k, actual)
|
||||
if E == 0:
|
||||
print('Warning! Expected 0 counts of {}, but got {}'.format(k, O))
|
||||
else:
|
||||
chiSquared += (O - E) ** 2 / E
|
||||
|
||||
if chiSquared >= _chiSquared_table[degreesFreedom]:
|
||||
self.fail('Significant difference between expected and actual answer distributions: \n' +
|
||||
'Chi2 value: {} with {} degrees of freedom'.format(chiSquared, degreesFreedom))
|
||||
|
||||
def run_testcase(self, initial, modified, target, iterations, expected):
|
||||
print('expected:')
|
||||
pprint(expected)
|
||||
actual = Copycat().run(initial, modified, target, iterations)
|
||||
print('actual:')
|
||||
pprint(actual)
|
||||
self.assertEqual(sum(a['count'] for a in list(actual.values())), iterations)
|
||||
self.assertProbabilitiesLookRoughlyLike(actual, expected, iterations)
|
||||
|
||||
def test_simple_cases(self):
|
||||
self.run_testcase('abc', 'abd', 'efg', 30,
|
||||
{'dfg': {'avgtemp': 72.37092377767368, 'avgtime': 475.0, 'count': 1},
|
||||
'efd': {'avgtemp': 49.421147725239024, 'avgtime': 410.5, 'count': 2},
|
||||
'efh': {'avgtemp': 19.381658717913258,
|
||||
'avgtime': 757.1851851851852,
|
||||
'count': 27}})
|
||||
self.run_testcase('abc', 'abd', 'ijk', 30,
|
||||
{'ijd': {'avgtemp': 14.691978036611559, 'avgtime': 453.0, 'count': 1},
|
||||
'ijl': {'avgtemp': 22.344023091153964,
|
||||
'avgtime': 742.1428571428571,
|
||||
'count': 28},
|
||||
'jjk': {'avgtemp': 11.233344554288019, 'avgtime': 595.0, 'count': 1}})
|
||||
|
||||
|
||||
def test_abc_xyz(self):
|
||||
self.run_testcase('abc', 'abd', 'xyz', 100,
|
||||
{'dyz': {'avgtemp': 16.78130739435325, 'avgtime': 393.0, 'count': 1},
|
||||
'wyz': {'avgtemp': 26.100450643627426, 'avgtime': 4040.0, 'count': 2},
|
||||
'xyd': {'avgtemp': 21.310415433987586,
|
||||
'avgtime': 5592.277777777777,
|
||||
'count': 90},
|
||||
'xyz': {'avgtemp': 23.798124933747882, 'avgtime': 3992.0, 'count': 1},
|
||||
'yyz': {'avgtemp': 27.137975077133788, 'avgtime': 4018.5, 'count': 6}})
|
||||
|
||||
def test_ambiguous_case(self):
|
||||
self.run_testcase('abc', 'abd', 'ijkk', 100,
|
||||
{'ijd': {'avgtemp': 55.6767488926397, 'avgtime': 948.0, 'count': 1},
|
||||
'ijkd': {'avgtemp': 78.09357723857647, 'avgtime': 424.5, 'count': 2},
|
||||
'ijkk': {'avgtemp': 68.54252699118226, 'avgtime': 905.5, 'count': 2},
|
||||
'ijkkk': {'avgtemp': 21.75444235750483,
|
||||
'avgtime': 2250.3333333333335,
|
||||
'count': 3},
|
||||
'ijkl': {'avgtemp': 38.079858245918466,
|
||||
'avgtime': 1410.2391304347825,
|
||||
'count': 46},
|
||||
'ijll': {'avgtemp': 27.53845719945872,
|
||||
'avgtime': 1711.8863636363637,
|
||||
'count': 44},
|
||||
'jjkk': {'avgtemp': 75.76606718990365, 'avgtime': 925.0, 'count': 2}})
|
||||
|
||||
def test_mrrjjj(self):
|
||||
self.run_testcase('abc', 'abd', 'mrrjjj', 30,
|
||||
{'mrrjjd': {'avgtemp': 44.46354725386579, 'avgtime': 1262.0, 'count': 1},
|
||||
'mrrjjjj': {'avgtemp': 17.50702440140412, 'avgtime': 1038.375, 'count': 8},
|
||||
'mrrjjk': {'avgtemp': 55.189156978290264,
|
||||
'avgtime': 1170.6363636363637,
|
||||
'count': 11},
|
||||
'mrrkkk': {'avgtemp': 43.709349775080746, 'avgtime': 1376.2, 'count': 10}})
|
||||
|
||||
'''
|
||||
Below are examples of improvements that could be made to copycat.
|
||||
|
||||
def test_elongation(self):
|
||||
# This isn't remotely what a human would say.
|
||||
self.run_testcase('abc', 'aabbcc', 'milk', 30,
|
||||
{'lilk': {'avgtemp': 68.18128407669258,
|
||||
'avgtime': 1200.6666666666667,
|
||||
'count': 3},
|
||||
'mikj': {'avgtemp': 57.96973195905564,
|
||||
'avgtime': 1236.888888888889,
|
||||
'count': 9},
|
||||
'milb': {'avgtemp': 79.98413990245763, 'avgtime': 255.0, 'count': 1},
|
||||
'milj': {'avgtemp': 64.95289549955349, 'avgtime': 1192.4, 'count': 15},
|
||||
'milk': {'avgtemp': 66.11387816293755, 'avgtime': 1891.5, 'count': 2}})
|
||||
def test_repairing_successor_sequence(self):
|
||||
# This isn't remotely what a human would say.
|
||||
self.run_testcase('aba', 'abc', 'xyx', 30,
|
||||
{'cyx': {'avgtemp': 82.10555880340601, 'avgtime': 2637.0, 'count': 2},
|
||||
'xc': {'avgtemp': 73.98845045179358, 'avgtime': 5459.5, 'count': 2},
|
||||
'xyc': {'avgtemp': 77.1384941639991,
|
||||
'avgtime': 4617.434782608696,
|
||||
'count': 23},
|
||||
'xyx': {'avgtemp': 74.39287653046891, 'avgtime': 3420.0, 'count': 3}})
|
||||
def test_nonsense(self):
|
||||
self.run_testcase('cat', 'dog', 'cake', 10, {
|
||||
'cakg': {'count': 99, 'avgtemp': 70},
|
||||
'gake': {'count': 1, 'avgtemp': 59},
|
||||
})
|
||||
self.run_testcase('cat', 'dog', 'kitten', 10, {
|
||||
'kitteg': {'count': 96, 'avgtemp': 66},
|
||||
'kitten': {'count': 4, 'avgtemp': 68},
|
||||
})
|
||||
'''
|
||||
def test(self):
|
||||
print('Testing copycat with input file: {}'.format(TestCopycat.Filename))
|
||||
try:
|
||||
with open(TestCopycat.Filename, 'rb') as infile:
|
||||
problems = pickle.load(infile)
|
||||
except Exception as e:
|
||||
print('Generating due to error:')
|
||||
print(e)
|
||||
problems = generate()
|
||||
|
||||
for problem in problems:
|
||||
problem.test(iso_chi_squared)
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--generate', action='store_true')
|
||||
parser.add_argument('filename', default='.distributions', nargs='?')
|
||||
parser.add_argument('unittest_args', default=[], nargs='?')
|
||||
|
||||
args = parser.parse_args()
|
||||
# TODO: Go do something with args.input and args.filename
|
||||
|
||||
TestCopycat.Filename = args.filename
|
||||
|
||||
if args.generate:
|
||||
generate()
|
||||
|
||||
# Now set the sys.argv to the unittest_args (leaving sys.argv[0] alone)
|
||||
sys.argv[1:] = args.unittest_args
|
||||
unittest.main()
|
||||
|
||||
Reference in New Issue
Block a user