Adds meta and parameterized meta formulas, for fun
This commit is contained in:
@ -71,7 +71,7 @@ class Copycat(object):
|
||||
self.workspace.resetWithStrings(initial, modified, target)
|
||||
|
||||
answers = {}
|
||||
for formula in ['original', 'best', 'sbest', 'pbest', 'none']:
|
||||
for formula in ['original', 'best', 'sbest', 'pbest', 'meta', 'pmeta', 'none']:
|
||||
self.temperature.useAdj(formula)
|
||||
answers = {}
|
||||
for i in range(iterations):
|
||||
|
||||
@ -24,19 +24,19 @@ def _entropy(temp, prob):
|
||||
f = (c + 1) * prob
|
||||
return -f * math.log2(f)
|
||||
|
||||
def _weighted(temp, prob, s, u, alpha=1, beta=1):
|
||||
def _weighted(temp, s, u):
|
||||
weighted = (temp / 100) * s + ((100 - temp) / 100) * u
|
||||
return weighted
|
||||
|
||||
def _weighted_inverse(temp, prob):
|
||||
iprob = 1 - prob
|
||||
return _weighted(temp, prob, iprob, prob)
|
||||
return _weighted(temp, iprob, prob)
|
||||
|
||||
def _fifty_converge(temp, prob): # Uses .5 instead of 1-prob
|
||||
return _weighted(temp, prob, .5, prob)
|
||||
return _weighted(temp, .5, prob)
|
||||
|
||||
def _soft_curve(temp, prob): # Curves to the average of the (1-p) and .5
|
||||
return min(1, _weighted(temp, prob, (1.5-prob)/2, prob))
|
||||
return min(1, _weighted(temp, (1.5-prob)/2, prob))
|
||||
|
||||
def _weighted_soft_curve(temp, prob): # Curves to the weighted average of the (1-p) and .5
|
||||
weight = 100
|
||||
@ -49,25 +49,25 @@ def _weighted_soft_curve(temp, prob): # Curves to the weighted average of the (1
|
||||
def _alt_fifty(temp, prob):
|
||||
s = .5
|
||||
u = prob ** 2 if prob < .5 else math.sqrt(prob)
|
||||
return _weighted(temp, prob, s, u)
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
def _averaged_alt(temp, prob):
|
||||
s = (1.5 - prob)/2
|
||||
u = prob ** 2 if prob < .5 else math.sqrt(prob)
|
||||
return _weighted(temp, prob, s, u)
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
|
||||
def _working_best(temp, prob):
|
||||
s = .5 # convergence
|
||||
r = 1.05 # power
|
||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||
return _weighted(temp, prob, s, u)
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
def _soft_best(temp, prob):
|
||||
s = .5 # convergence
|
||||
r = 1.05 # power
|
||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||
return _weighted(temp, prob, s, u)
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
def _parameterized_best(temp, prob):
|
||||
# (D$66/100)*($E$64*$B68 + $G$64*$F$64)/($E$64 + $G$64)+((100-D$66)/100)*IF($B68 > 0.5, $B68^(1/$H$64), $B68^$H$64)
|
||||
@ -78,7 +78,24 @@ def _parameterized_best(temp, prob):
|
||||
s = (alpha * prob + beta * s) / (alpha + beta)
|
||||
r = 1.05
|
||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||
return _weighted(temp, prob, s, u)
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
def _meta(temp, prob):
|
||||
r = _weighted(temp, 1, 2) # Make r a function of temperature
|
||||
s = .5
|
||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
def _meta_parameterized(temp, prob):
|
||||
r = _weighted(temp, 1, 2) # Make r a function of temperature
|
||||
|
||||
alpha = 5
|
||||
beta = 1
|
||||
s = .5
|
||||
s = (alpha * prob + beta * s) / (alpha + beta)
|
||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||
|
||||
return _weighted(temp, s, u)
|
||||
|
||||
def _none(temp, prob):
|
||||
return prob
|
||||
@ -99,6 +116,8 @@ class Temperature(object):
|
||||
'best' : _working_best,
|
||||
'sbest' : _soft_best,
|
||||
'pbest' : _parameterized_best,
|
||||
'meta' : _meta,
|
||||
'pmeta' : _meta_parameterized,
|
||||
'none' : _none}
|
||||
self.diffs = 0
|
||||
self.ndiffs = 0
|
||||
|
||||
Reference in New Issue
Block a user