Adds annotations and formula notes
This commit is contained in:
@ -223,34 +223,78 @@ class Temperature(object):
|
||||
f = ((10 - sqrt(100 - self.value()))/100 + 1) * value
|
||||
|
||||
For the original LISP program:
|
||||
; This function is a filter: it inputs a value (from 0 to 100) and returns
|
||||
; a probability (from 0 - 1) based on that value and the temperature.
|
||||
*********************************************************
|
||||
; When the temperature is 0, the result is (/ value 100), but at higher
|
||||
; temperatures, values below 50 get raised and values above 50 get lowered
|
||||
; as a function of temperature.
|
||||
**********************************************************
|
||||
; I think this whole formula could probably be simplified.
|
||||
**********************************************************
|
||||
|
||||
; This function is a filter: it inputs a value (from 0 to 100) and returns
|
||||
; a probability (from 0 - 1) based on that value and the temperature. When
|
||||
; the temperature is 0, the result is (/ value 100), but at higher
|
||||
; temperatures, values below 50 get raised and values above 50 get lowered
|
||||
; as a function of temperature.
|
||||
; I think this whole formula could probably be simplified.
|
||||
|
||||
(setq result
|
||||
(cond ((= prob 0) 0)
|
||||
((<= prob .5)
|
||||
(setq low-prob-factor (max 1 (truncate (abs (log prob 10)))))
|
||||
(min (+ prob
|
||||
(* (/ (- 10 (sqrt (fake-reciprocal *temperature*)))
|
||||
100)
|
||||
(- (expt 10 (- (1- low-prob-factor))) prob)))
|
||||
.5))
|
||||
|
||||
((= prob .5) .5)
|
||||
((> prob .5)
|
||||
(max (- 1
|
||||
(+ (- 1 prob)
|
||||
(defun get-temperature-adjusted-probability (prob &aux low-prob-factor
|
||||
result)
|
||||
(setq result
|
||||
(cond ((= prob 0) 0)
|
||||
((<= prob .5)
|
||||
(setq low-prob-factor (max 1 (truncate (abs (log prob 10)))))
|
||||
(min (+ prob
|
||||
(* (/ (- 10 (sqrt (fake-reciprocal *temperature*)))
|
||||
100)
|
||||
(- 1 (- 1 prob)))))
|
||||
.5))))
|
||||
result)
|
||||
100)
|
||||
(- (expt 10 (- (1- low-prob-factor))) prob)))
|
||||
.5))
|
||||
|
||||
((= prob .5) .5)
|
||||
((> prob .5)
|
||||
(max (- 1
|
||||
(+ (- 1 prob)
|
||||
(* (/ (- 10 (sqrt (fake-reciprocal *temperature*)))
|
||||
100)
|
||||
(- 1 (- 1 prob)))))
|
||||
.5))))
|
||||
result)
|
||||
|
||||
Which was tested using:
|
||||
|
||||
(defun test-get-temperature-adjusted-probability (prob)
|
||||
(with-open-file (ostream "testfile" :direction :output
|
||||
:if-does-not-exist :create
|
||||
:if-exists :append)
|
||||
(format ostream "prob: ~a~&" prob)
|
||||
(loop for temp in '(0 10 20 30 40 50 60 70 80 90 100) do
|
||||
(setq *temperature* temp)
|
||||
(format ostream "Temperature: ~a; probability ~a~&"
|
||||
temp (float (get-temperature-adjusted-probability prob))))
|
||||
(format ostream "~%")))
|
||||
|
||||
Interpretation:
|
||||
|
||||
Importantly, the values of .5 in both the min and max correspond to the mid-cutoff of 50:
|
||||
i.e. 'values below 50 get raised and values above 50 get lowered'
|
||||
Still, it is interesting to note that changing 'return max(f, 0.0) to max(f, 0.5) has no significant effect on the distribution
|
||||
|
||||
It looks like the function below preserves most of the functionality of the original lisp.
|
||||
However, the comments themselves agree that the formula is overly complicated.
|
||||
|
||||
prob = value # Slightly more descriptive (and less ambiguous), will change argument
|
||||
# Temperature, potentially clamped
|
||||
temp = self.value()
|
||||
# A scaling factor (between 0 and infinity), based on temperature (i.e. 100/coldness)
|
||||
if temp == 100: # Avoid dividing by zero
|
||||
factor = float('inf')
|
||||
else:
|
||||
factor = 100 / (100 - temp)
|
||||
|
||||
if prob == .5:
|
||||
return .5
|
||||
elif prob > .5:
|
||||
prob = prob / factor
|
||||
elif prob < .5:
|
||||
prob = prob * factor
|
||||
return max(min(prob, 0), 1) # Normalize between 0 and 1. TODO: make scaling factor more reasonable
|
||||
"""
|
||||
|
||||
if value == 0 or value == 0.5 or self.value() == 0:
|
||||
return value
|
||||
if value < 0.5:
|
||||
|
||||
Reference in New Issue
Block a user