Adds meta and parameterized meta formulas, for fun
This commit is contained in:
@ -71,7 +71,7 @@ class Copycat(object):
|
|||||||
self.workspace.resetWithStrings(initial, modified, target)
|
self.workspace.resetWithStrings(initial, modified, target)
|
||||||
|
|
||||||
answers = {}
|
answers = {}
|
||||||
for formula in ['original', 'best', 'sbest', 'pbest', 'none']:
|
for formula in ['original', 'best', 'sbest', 'pbest', 'meta', 'pmeta', 'none']:
|
||||||
self.temperature.useAdj(formula)
|
self.temperature.useAdj(formula)
|
||||||
answers = {}
|
answers = {}
|
||||||
for i in range(iterations):
|
for i in range(iterations):
|
||||||
|
|||||||
@ -24,19 +24,19 @@ def _entropy(temp, prob):
|
|||||||
f = (c + 1) * prob
|
f = (c + 1) * prob
|
||||||
return -f * math.log2(f)
|
return -f * math.log2(f)
|
||||||
|
|
||||||
def _weighted(temp, prob, s, u, alpha=1, beta=1):
|
def _weighted(temp, s, u):
|
||||||
weighted = (temp / 100) * s + ((100 - temp) / 100) * u
|
weighted = (temp / 100) * s + ((100 - temp) / 100) * u
|
||||||
return weighted
|
return weighted
|
||||||
|
|
||||||
def _weighted_inverse(temp, prob):
|
def _weighted_inverse(temp, prob):
|
||||||
iprob = 1 - prob
|
iprob = 1 - prob
|
||||||
return _weighted(temp, prob, iprob, prob)
|
return _weighted(temp, iprob, prob)
|
||||||
|
|
||||||
def _fifty_converge(temp, prob): # Uses .5 instead of 1-prob
|
def _fifty_converge(temp, prob): # Uses .5 instead of 1-prob
|
||||||
return _weighted(temp, prob, .5, prob)
|
return _weighted(temp, .5, prob)
|
||||||
|
|
||||||
def _soft_curve(temp, prob): # Curves to the average of the (1-p) and .5
|
def _soft_curve(temp, prob): # Curves to the average of the (1-p) and .5
|
||||||
return min(1, _weighted(temp, prob, (1.5-prob)/2, prob))
|
return min(1, _weighted(temp, (1.5-prob)/2, prob))
|
||||||
|
|
||||||
def _weighted_soft_curve(temp, prob): # Curves to the weighted average of the (1-p) and .5
|
def _weighted_soft_curve(temp, prob): # Curves to the weighted average of the (1-p) and .5
|
||||||
weight = 100
|
weight = 100
|
||||||
@ -49,25 +49,25 @@ def _weighted_soft_curve(temp, prob): # Curves to the weighted average of the (1
|
|||||||
def _alt_fifty(temp, prob):
|
def _alt_fifty(temp, prob):
|
||||||
s = .5
|
s = .5
|
||||||
u = prob ** 2 if prob < .5 else math.sqrt(prob)
|
u = prob ** 2 if prob < .5 else math.sqrt(prob)
|
||||||
return _weighted(temp, prob, s, u)
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
def _averaged_alt(temp, prob):
|
def _averaged_alt(temp, prob):
|
||||||
s = (1.5 - prob)/2
|
s = (1.5 - prob)/2
|
||||||
u = prob ** 2 if prob < .5 else math.sqrt(prob)
|
u = prob ** 2 if prob < .5 else math.sqrt(prob)
|
||||||
return _weighted(temp, prob, s, u)
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
|
|
||||||
def _working_best(temp, prob):
|
def _working_best(temp, prob):
|
||||||
s = .5 # convergence
|
s = .5 # convergence
|
||||||
r = 1.05 # power
|
r = 1.05 # power
|
||||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||||
return _weighted(temp, prob, s, u)
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
def _soft_best(temp, prob):
|
def _soft_best(temp, prob):
|
||||||
s = .5 # convergence
|
s = .5 # convergence
|
||||||
r = 1.05 # power
|
r = 1.05 # power
|
||||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||||
return _weighted(temp, prob, s, u)
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
def _parameterized_best(temp, prob):
|
def _parameterized_best(temp, prob):
|
||||||
# (D$66/100)*($E$64*$B68 + $G$64*$F$64)/($E$64 + $G$64)+((100-D$66)/100)*IF($B68 > 0.5, $B68^(1/$H$64), $B68^$H$64)
|
# (D$66/100)*($E$64*$B68 + $G$64*$F$64)/($E$64 + $G$64)+((100-D$66)/100)*IF($B68 > 0.5, $B68^(1/$H$64), $B68^$H$64)
|
||||||
@ -78,7 +78,24 @@ def _parameterized_best(temp, prob):
|
|||||||
s = (alpha * prob + beta * s) / (alpha + beta)
|
s = (alpha * prob + beta * s) / (alpha + beta)
|
||||||
r = 1.05
|
r = 1.05
|
||||||
u = prob ** r if prob < .5 else prob ** (1/r)
|
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||||
return _weighted(temp, prob, s, u)
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
|
def _meta(temp, prob):
|
||||||
|
r = _weighted(temp, 1, 2) # Make r a function of temperature
|
||||||
|
s = .5
|
||||||
|
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||||
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
|
def _meta_parameterized(temp, prob):
|
||||||
|
r = _weighted(temp, 1, 2) # Make r a function of temperature
|
||||||
|
|
||||||
|
alpha = 5
|
||||||
|
beta = 1
|
||||||
|
s = .5
|
||||||
|
s = (alpha * prob + beta * s) / (alpha + beta)
|
||||||
|
u = prob ** r if prob < .5 else prob ** (1/r)
|
||||||
|
|
||||||
|
return _weighted(temp, s, u)
|
||||||
|
|
||||||
def _none(temp, prob):
|
def _none(temp, prob):
|
||||||
return prob
|
return prob
|
||||||
@ -99,6 +116,8 @@ class Temperature(object):
|
|||||||
'best' : _working_best,
|
'best' : _working_best,
|
||||||
'sbest' : _soft_best,
|
'sbest' : _soft_best,
|
||||||
'pbest' : _parameterized_best,
|
'pbest' : _parameterized_best,
|
||||||
|
'meta' : _meta,
|
||||||
|
'pmeta' : _meta_parameterized,
|
||||||
'none' : _none}
|
'none' : _none}
|
||||||
self.diffs = 0
|
self.diffs = 0
|
||||||
self.ndiffs = 0
|
self.ndiffs = 0
|
||||||
|
|||||||
Reference in New Issue
Block a user