Files
copycat/copycat/formulas.py
2014-12-22 16:38:10 +00:00

161 lines
5.0 KiB
Python

import math
import logging
import random
from temperature import temperature
actualTemperature = Temperature = 100.0
def selectListPosition(probabilities):
total = sum(probabilities)
#logging.info('total: %s' % total)
r = random.random()
stopPosition = total * r
#logging.info('stopPosition: %s' % stopPosition)
total = 0
i = 0
for probability in probabilities:
total += probability
if total > stopPosition:
return i
i += 1
return 0
def weightedAverage(values):
total = 0.0
totalWeights = 0.0
for value, weight in values:
total += value * weight
totalWeights += weight
if not totalWeights:
return 0.0
return total / totalWeights
def temperatureAdjustedValue(value):
#logging.info('Temperature: %s' % Temperature)
#logging.info('actualTemperature: %s' % actualTemperature)
return value ** (((100.0 - Temperature) / 30.0) + 0.5)
def temperatureAdjustedProbability(value):
if not value or value == 0.5 or not temperature.value:
return value
if value < 0.5:
return 1.0 - temperatureAdjustedProbability(1.0 - value)
coldness = 100.0 - temperature.value
a = math.sqrt(coldness)
b = 10.0 - a
c = b / 100
d = c * (1.0 - (1.0 - value)) # aka c * value, but we're following the java
e = (1.0 - value) + d
f = 1.0 - e
return max(f, 0.5)
def coinFlip(chance=0.5):
return random.random() < chance
def blur(value):
root = math.sqrt(value)
if coinFlip():
return value + root
return value - root
def chooseObjectFromList(objects, attribute):
if not objects:
return None
probabilities = []
for object in objects:
value = getattr(object, attribute)
probability = temperatureAdjustedValue(value)
logging.info('Object: %s, value: %d, probability: %d' % (object, value, probability))
probabilities += [probability]
i = selectListPosition(probabilities)
logging.info("Selected: %d" % i)
return objects[i]
def chooseRelevantDescriptionByActivation(workspaceObject):
descriptions = workspaceObject.relevantDescriptions()
if not descriptions:
return None
activations = [description.descriptor.activation for description in descriptions]
i = selectListPosition(activations)
return descriptions[i]
def similarPropertyLinks(slip_node):
result = []
for slip_link in slip_node.propertyLinks:
association = slip_link.degreeOfAssociation() / 100.0
probability = temperatureAdjustedProbability(association)
if coinFlip(probability):
result += [slip_link]
return result
def chooseSlipnodeByConceptualDepth(slip_nodes):
if not slip_nodes:
return None
depths = [temperatureAdjustedValue(n.conceptualDepth) for n in slip_nodes]
i = selectListPosition(depths)
return slip_nodes[i]
def __relevantCategory(objekt, slipnode):
return objekt.rightBond and objekt.rightBond.category == slipnode
def __relevantDirection(objekt, slipnode):
return objekt.rightBond and objekt.rightBond.directionCategory == slipnode
def __localRelevance(string, slipnode, relevance):
numberOfObjectsNotSpanning = numberOfMatches = 0.0
#logging.info("find relevance for a string: %s" % string);
for objekt in string.objects:
#logging.info('object: %s' % objekt)
if not objekt.spansString():
#logging.info('non spanner: %s' % objekt)
numberOfObjectsNotSpanning += 1.0
if relevance(objekt, slipnode):
numberOfMatches += 1.0
#logging.info("matches: %d, not spanning: %d" % (numberOfMatches,numberOfObjectsNotSpanning))
if numberOfObjectsNotSpanning == 1:
return 100.0 * numberOfMatches
return 100.0 * numberOfMatches / (numberOfObjectsNotSpanning - 1.0)
def localBondCategoryRelevance(string, category):
if len(string.objects) == 1:
return 0.0
return __localRelevance(string, category, __relevantCategory)
def localDirectionCategoryRelevance(string, direction):
return __localRelevance(string, direction, __relevantDirection)
def getMappings(objectFromInitial, objectFromTarget, initialDescriptions, targetDescriptions):
mappings = []
from conceptMapping import ConceptMapping
for initialDescription in initialDescriptions:
for targetDescription in targetDescriptions:
if initialDescription.descriptionType == targetDescription.descriptionType:
if initialDescription.descriptor == targetDescription.descriptor or initialDescription.descriptor.slipLinked(targetDescription.descriptor):
mapping = ConceptMapping(
initialDescription.descriptionType,
targetDescription.descriptionType,
initialDescription.descriptor,
targetDescription.descriptor,
objectFromInitial,
objectFromTarget
)
mappings += [mapping]
return mappings