Files
copycat/formulas.py
2012-10-26 17:35:08 +01:00

147 lines
4.5 KiB
Python

import math #, random
import logging
import utils
from temperature import temperature
actualTemperature = Temperature = 100.0
def selectListPosition(probabilities):
total = sum(probabilities)
#logging.info('total: %s' % total)
r = utils.random()
stopPosition = total * r
#logging.info('stopPosition: %s' % stopPosition)
total = 0
index = 0
for probability in probabilities:
total += probability
if total > stopPosition:
return index
index += 1
return 0
def weightedAverage(values):
total = 0.0
totalWeights = 0.0
for value,weight in values:
total += value * weight
totalWeights += weight
if not totalWeights:
return 0.0
return total / totalWeights
def temperatureAdjustedValue(value):
#logging.info('Temperature: %s' % Temperature)
#logging.info('actualTemperature: %s' % actualTemperature)
return value ** (((100.0-Temperature)/30.0)+0.5)
def temperatureAdjustedProbability(value):
if not value or value == 0.5 or not temperature.value:
return value
if value < 0.5:
return 1.0 - temperatureAdjustedProbability(1.0 - value)
coldness = 100.0 - temperature.value
a = math.sqrt(coldness)
b = 10.0 - a
c = b / 100
d = c * ( 1.0 - ( 1.0 - value ) ) # aka c * value, but we're following the java
e = ( 1.0 - value ) + d
f = 1.0 - e
return max(f,0.5)
def coinFlip(chance=0.5):
return utils.random() < chance
def blur(value):
root = math.sqrt(value)
if coinFlip():
return value + root
return value - root
def chooseObjectFromList(objects,attribute):
if not objects:
return None
probabilities = []
for object in objects:
value = getattr(object,attribute)
probability = temperatureAdjustedValue(value)
logging.info('Object: %s, value: %d, probability: %d' % (object,value,probability))
probabilities += [ probability ]
index = selectListPosition(probabilities)
logging.info("Selected: %d" % index)
return objects[index]
def chooseRelevantDescriptionByActivation(workspaceObject):
descriptions = workspaceObject.relevantDescriptions()
if not descriptions:
return None
activations = [ description.descriptor.activation for description in descriptions ]
index = selectListPosition(activations)
return descriptions[ index ]
def similarPropertyLinks(slip_node):
result = []
for slip_link in slip_node.propertyLinks:
association = slip_link.degreeOfAssociation() / 100.0
probability = temperatureAdjustedProbability( association )
if coinFlip(probability):
result += [ slip_link ]
return result
def chooseSlipnodeByConceptualDepth(slip_nodes):
if not slip_nodes:
return None
depths = [ temperatureAdjustedValue(n.conceptualDepth) for n in slip_nodes ]
i = selectListPosition(depths)
return slip_nodes[ i ]
def __relevantCategory(objekt,slipnode):
return objekt.rightBond and objekt.rightBond.category == slipnode
def __relevantDirection(objekt,slipnode):
return objekt.rightBond and objekt.rightBond.directionCategory == slipnode
def __localRelevance(string,slipnode,relevance):
numberOfObjectsNotSpanning = numberOfMatches = 0.0
#logging.info("find relevance for a string: %s" % string);
for objekt in string.objects:
#logging.info('object: %s' % objekt)
if not objekt.spansString():
#logging.info('non spanner: %s' % objekt)
numberOfObjectsNotSpanning += 1.0
if relevance(objekt,slipnode):
numberOfMatches += 1.0
#logging.info("matches: %d, not spanning: %d" % (numberOfMatches,numberOfObjectsNotSpanning))
if numberOfObjectsNotSpanning == 1:
return 100.0 * numberOfMatches
return 100.0 * numberOfMatches / (numberOfObjectsNotSpanning - 1.0)
def localBondCategoryRelevance(string, category):
if len(string.objects) == 1:
return 0.0
return __localRelevance(string,category,__relevantCategory)
def localDirectionCategoryRelevance(string, direction):
return __localRelevance(string,direction,__relevantDirection)
def getMappings(objectFromInitial,objectFromTarget, initialDescriptions, targetDescriptions):
mappings = []
from conceptMapping import ConceptMapping
for initialDescription in initialDescriptions:
for targetDescription in targetDescriptions:
if initialDescription.descriptionType == targetDescription.descriptionType:
if initialDescription.descriptor == targetDescription.descriptor or initialDescription.descriptor.slipLinked(targetDescription.descriptor):
mapping = ConceptMapping(
initialDescription.descriptionType,
targetDescription.descriptionType,
initialDescription.descriptor,
targetDescription.descriptor,
objectFromInitial,
objectFromTarget
)
mappings += [ mapping ]
return mappings