No Significant Relationship Between Conceptual Depth and

Graph Distance to Concrete Letter Nodes in the Copycat Slipnet

Slipnet Analysis Project
slipnet_analysis/

February 1, 2026

Abstract

The Copycat system, developed by Douglas Hof-
stadter and Melanie Mitchell, employs a seman-
tic network called the slipnet where each node
has a “conceptual depth” parameter intended to
capture its level of abstraction. We investigate
whether conceptual depth correlates with the
topological distance (hop count) from abstract
concept nodes to concrete letter nodes (a-z). Us-
ing breadth-first search on an undirected graph
representation of the slipnet, we computed min-
imum hop distances for 33 non-letter nodes, as-
signing unreachable nodes a penalty distance of
2 x max(hops). Statistical analysis reveals no
significant correlation between conceptual depth
and hop count (Pearson r = 0.281, p = 0.113;
Spearman p = 0.141, p = 0.433). The coefficient
of determination (R? = 0.079) indicates that
conceptual depth explains only 7.9% of the vari-
ance in hop distance. These findings demonstrate
that conceptual depth and network topology are
orthogonal design dimensions in the Copycat ar-
chitecture.

1 Introduction

The Copycat project, developed by Douglas Hof-
stadter and Melanie Mitchell in the 1980s and
1990s, represents a landmark effort in computa-
tional cognitive science to model analogical rea-
soning (I; 2). The system operates on letter-
string analogy problems of the form “if abc
changes to abd, what does ppqqrr change to?”
While the domain is deliberately simple, the un-

derlying cognitive architecture embodies sophis-
ticated principles about how concepts are repre-
sented and manipulated during reasoning.

1.1 The Slipnet Architecture

Central to Copycat’s operation is the slipnet, a
semantic network containing 59 nodes represent-
ing concepts relevant to the letter-string domain.
These concepts span multiple levels of abstrac-
tion:

e Concrete letters: The 26 lowercase letters
(a-z), representing the atomic units of the
problem domain

e Numeric lengths: The numbers 1-5, used
to describe group sizes

e Positional concepts:
rightmost, first, last, middle

leftmost,

e Relational concepts:
predecessor, sameness

successor,

e Category concepts: letterCategory,
bondCategory, groupCategory

e Meta-concepts: opposite, identity

The slipnet contains 202 directed links con-
necting these nodes. When converted to an undi-
rected graph, this yields 104 unique edges after
removing directional duplicates.



1.2 Conceptual Depth

Each slipnet node has a conceptual depth param-
eter, a numeric value between 10 and 90 repre-
senting its level of abstraction. Hofstadter and
Mitchell intended this parameter to capture the
“deepness” of a concept—how far removed it is
from surface-level, perceptual features:

e Letter nodes (a-—z): depth = 10 (most con-
crete)

e letter: depth = 20

e letterCategory, numbers 1-5: depth = 30
e leftmost, rightmost, middle: depth = 40
e predecessor, successor: depth = 50

e first, last, length: depth = 60

e stringPositionCategory,
directionCategory: depth = 70

e sameness, samenessGroup, group: depth =

80
e opposite, identity, bondFacet,
objectCategory: depth = 90 (most

abstract)

The conceptual depth influences Copycat’s be-
havior in several ways: it affects activation
spreading dynamics, it modulates the system’s
preference for discovering “deep” versus “shallow”
analogies, and it contributes to the calculation of
conceptual similarity between structures.

1.3 Research Question

A natural hypothesis is that deeper (more ab-
stract) concepts should be topologically farther
from concrete letters in the network. After all,
if conceptual depth represents abstraction level,
one might expect that reaching abstract con-
cepts requires traversing more edges from the
concrete letter nodes. We test this hypothesis us-
ing hop count—the minimum number of edges to
traverse—as an Erd&s number-style metric, with
letters serving as the “center” analogous to Erdgs
himself.

2 Methods

2.1 Data Extraction

The slipnet structure was extracted from the
original Copycat Python implementation and se-
rialized to JSON format. The extraction pre-
served all 59 nodes with their attributes (name,
conceptual depth, intrinsic link length) and all
202 directed links with their attributes (source,
destination, fixed length, type, optional label).

2.2 Graph Construction

We constructed an undirected graph G = (V, E)
from the slipnet using the NetworkX library.
Each node in the slipnet became a vertex in
G, and each directed link became an undirected
edge. When multiple directed links existed be-
tween the same pair of nodes (e.g., both a—b
and b—a), they were collapsed into a single undi-
rected edge. This yielded |V| = 59 vertices and
|E| = 104 edges.

2.3 Hop Count Computation

For each non-letter node v € V, we computed
the minimum number of edges to reach any letter
node ¢ € L where L = {a,b,c,...,z}:

(1)

where P(v,{) is the shortest path (sequence
of vertices) from v to ¢. The subtraction of 1
converts path length (number of vertices) to hop
count (number of edges).

h — min|P(v, )| — 1
ops(v) rzrgg\ (v,0)]

This metric is analogous to an Erd6s number,
with the 26 letter nodes collectively playing the
role of Erdds. A node with hop count 1 is directly
connected to at least one letter; a node with hop
count 2 is connected to a node that is connected
to a letter; and so on.

2.4 Handling Unreachable Nodes

Five nodes in the slipnet are topologically discon-
nected from the letter subgraph. Rather than
exclude these nodes from analysis, we assigned
them a penalty distance:



hops =2x max hops(v) (2)

unreachable
V€ Vreachable

With the maximum observed hop count among
reachable nodes being 4, unreachable nodes were
assigned hops = 8. This approach ensures all
33 non-letter nodes are included in the analy-
sis while appropriately penalizing disconnected
nodes.

2.5 Statistical Analysis

We computed both Pearson’s correlation coeffi-
cient r (measuring linear relationship) and Spear-
man’s rank correlation p (measuring monotonic
relationship) between conceptual depth and hop
count. Statistical significance was assessed at
a = 0.05.

Linear regression was performed to character-
ize any trend:

hops = By + B1 x depth + € (3)

The coefficient of determination R? was com-
puted to quantify the proportion of variance in
hop count explained by conceptual depth.

3 Results

3.1 Network Connectivity

Of the 59 total nodes, 26 are letter nodes (which
have hop count 0 by definition) and 33 are non-
letter concept nodes. Among these 33 nodes, 28
are reachable from at least one letter and 5 are
disconnected from the letter subgraph. The five
disconnected nodes are:

e identity (depth = 90)

e opposite (depth = 90)

objectCategory (depth = 90)

e group (depth = 80)

letter (depth = 20)

3.2 Hop Distribution

Table [I| shows the distribution of hop counts
among all 33 non-letter nodes.

Table 1: Distribution of minimum hops to letter
nodes

Hops Count Example Nodes

1 3 letterCategory, first,
last

2 6 leftmost, length,
bondFacet

3 12 Numbers 1-5, sameness,
groupCategory

4 7 bondCategory,
predecessor, middle

8 5) identity, opposite,

letter (unreachable)

The distribution shows most nodes (28 of 33)
within 4 hops of a letter, with 5 nodes forming a
disconnected cluster.

3.3 Descriptive Statistics

Table [2| summarizes the distributions of concep-
tual depth and hop count.

Table 2: Descriptive statistics for analyzed nodes
(n=33)

Statistic Depth  Hops
Minimum 20 1
Maximum 90 8
Mean 55.76  3.61
Std. Dev. 21.89 2.04

3.4 Correlation Analysis

The correlation analysis yielded the following re-
sults:

e Pearson correlation: r = 0.281, p = 0.113
e Spearman correlation: p = 0.141, p = 0.433

e Coefficient of determination: R? = 0.079



e Linear regression: hops = 0.026 x depth +
2.14

Neither correlation coefficient approaches sta-
tistical significance. The p-values of 0.113 and
0.433 are above the 0.05 threshold. The R? of
0.079 indicates that conceptual depth explains
only 7.9% of the variance in hop count—a weak
effect at best.

The regression slope of 0.026 suggests that a
10-point increase in conceptual depth predicts
only a 0.26 increase in hop count—modest com-
pared to the 2.04 standard deviation of hops.

3.5 Visualization

Figure [1] displays the scatter plot of conceptual
depth versus minimum hops. Unreachable nodes
(hops=8) are shown in red. The wide spread of
depths at each hop level and the weak regression
line visually confirm the absence of any strong
relationship.

Correlation: Conceptual Depth vs Hops to Nearest Letter
Pearson r = 0.281 (p = 0.1132), Spearman rho = 0.141 (p = 0.4333)

@ Reachable
8] @ Unreachable (2xmax)
Linear fit (y = 0.026x + 2.14)

Minimum Hops to Letter Node (Erdos-style)

fetterCategory

Figure 1: Scatter plot of conceptual depth ver-
sus minimum hops to nearest letter node. Reach-
able nodes (blue) and unreachable nodes (red, as-
signed hops=2 x 4 = 8) are distinguished. Points
are jittered vertically for visibility. The dashed
line shows the linear regression fit.

3.6 Counterexamples

The data reveal striking counterexamples to any
depth-distance relationship:

1. High depth, few hops: bondFacet
(depth=90, the maximum) is only 2 hops
from a letter. Similarly, samenessGroup
and alphabeticPositionCategory (both
depth=80) are also just 2 hops away.

2. Low depth, many hops: The letter
node (depth=20) is completely disconnected
from actual letters despite being the object-
type concept for them. The number nodes
1-5 (depth=30) all require 3 hops to reach

a letter.

3. Same depth, different hops: At
depth=90, bondFacet needs  only
2  hops while identity, opposite,
and objectCategory are completely
unreachable—a dramatic difference.

4. Same hops, different depths: Nodes

at 2 hops have depths ranging from 40
(Leftmost) to 90 (bondFacet)—the full 50-
point range.

5. Unreachable nodes span depths: The
5 disconnected nodes have depths of 20,
80, and 90—covering most of the depth
range despite all being topologically equiva-
lent (infinitely far from letters).

4 Discussion

4.1 Orthogonal Design Dimensions

The weak, non-significant correlation (r = 0.281,
p = 0.113) demonstrates that conceptual depth
and network topology were designed as largely
independent dimensions. This orthogonality is
architecturally meaningful:

1. Network topology determines which con-
cepts can activate each other through
spreading activation. Two nodes connected
by an edge can directly influence each
other’s activation levels during reasoning.

2. Conceptual depth modulates how the sys-
tem values discoveries at different abstrac-
tion levels. Deeper concepts, when acti-
vated, contribute more to the system’s sense
of having found a “good” analogy.



By keeping these dimensions independent, the
slipnet can connect concepts that need to interact
(regardless of depth) while separately encoding
their semantic abstraction level.

4.2 The Disconnected Cluster

The five disconnected nodes form a coherent sub-
system:

e identity and opposite: These exist pri-
marily as labels on slip links, not as end-
points in the graph. They track activation
for meta-level relationship concepts.

e letter, group, objectCategory: These
form an isolated cluster representing the
object-type hierarchy. They classify
workspace objects but don’t connect to the
letter-category network.

Notably, the letter concept (depth=20,
relatively concrete) is disconnected while
letterCategory (depth=30) is directly con-
nected to all 26 letters. This distinction between
“letter-as-type” and “letter-as-category” fur-
ther illustrates how topology and depth serve
different purposes.

4.3 Hub Structure

Analysis of the shortest paths reveals that routes
to letters converge on gateway nodes:

e first — a: Property link providing direct
access

e last — z: Property link providing direct
access

e letterCategory — any letter: Instance

links to all 26 letters

The letterCategory node is particularly im-
portant, serving as a central hub. This makes it
the primary gateway between abstract concepts
and concrete letters, explaining why many paths
route through it.

4.4 Implications

Our findings have implications for understanding
and extending the Copycat architecture:

1. For analysis: Attempting to infer concep-
tual depth from topology—or vice versa—
would be misguided. They encode different
information.

2. For extensions: New concepts added to
the slipnet can be placed topologically based
on needed associations, with depth set inde-
pendently based on abstraction level.

3. For interpretation: The slipnet’s repre-
sentational power comes from having multi-
ple orthogonal dimensions, not from a single
unified hierarchy.

4.5 Limitations

Several limitations should be noted:

1. Sample size: With 33 nodes, statistical
power is limited, though this represents the
complete population of non-letter nodes.

2. Penalty assignment: The choice of
2 x max(hops) for unreachable nodes is
somewhat arbitrary. However, alternative
penalty values (e.g., 3 X max or oo) would
likely strengthen our conclusion.

3. Undirected assumption: We treated
edges as undirected. Analysis of directed
paths might differ.

4. Single metric: Hop count is one of many
possible graph metrics. Centrality measures
or spectral properties might reveal different
patterns.

5 Conclusion

There is no statistically significant relationship
between conceptual depth and hop distance to
letter nodes in the Copycat slipnet. With Pear-
son r = 0.281 (p = 0.113), Spearman p = 0.141
(p = 0.433), and R? = 0.079, conceptual depth



explains less than 8% of the variance in topolog-
ical distance—and this weak positive trend fails
to reach significance.

This finding supports the view that the slip-
net employs two orthogonal representational di-
mensions: network topology (governing associa-
tive access and activation flow) and conceptual
depth (governing abstraction-level preferences in
reasoning). This separation allows independent
tuning of each dimension and may contribute to
the slipnet’s representational flexibility.

Data Availability

All analysis scripts and data are available in the
slipnet_analysis/ directory:

e slipnet.json: Complete network with
computed paths

e compute_letter_paths.py: Hop computa-
tion script

e plot_depth_distance_correlation.py:
Statistical analysis and plotting

e compute_stats.py: Detailed statistics com-
putation

A Complete Data

Table |3| presents all 33 analyzed nodes sorted by
hop count and depth.

Table 3: All analyzed nodes sorted by hop count,

then depth
Node Depth Hops Reachable
letterCategory 30 1 Yes
first 60 1 Yes
last 60 1 Yes
leftmost 40 2 Yes
rightmost 40 2 Yes
length 60 2 Yes
samenessGroup 80 2 Yes
alphabeticPositionCategory 80 2 Yes
bondFacet 90 2 Yes
1 30 3 Yes
2 30 3 Yes
3 30 3 Yes
4 30 3 Yes
) 30 3 Yes
left 40 3 Yes
right 40 3 Yes
predecessorGroup 50 3 Yes
successorGroup 50 3 Yes
stringPositionCategory 70 3 Yes
sameness 80 3 Yes
groupCategory 80 3 Yes
middle 40 4 Yes
single 40 4 Yes
whole 40 4 Yes
predecessor 50 4 Yes
successor 50 4 Yes
directionCategory 70 4 Yes
bondCategory 80 4 Yes
letter 20 8 No
group 80 8 No
identity 90 8 No
opposite 90 8 No
objectCategory 90 8 No

B Link Type Distribution

The slipnet contains five distinct types of di-

rected links, summarized in Table [



Table 4: Slipnet link type distribution

Type Count Purpose

nonSlip 83 Lateral associations
that don’t allow con-
ceptual slippage

category 51 Upward hierarchy (in-
stance to category)

instance 50 Downward hierarchy
(category to instance)

slip 16 Links allowing concep-
tual slippage

property 2 Intrinsic attributes

(a—first, z—last)
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