def _working_best(temp, prob): s = .5 # convergence r = 1.05 # power u = prob ** r if prob < .5 else prob ** (1/r) return _weighted(temp, prob, s, u) def _soft_best(temp, prob): s = .5 # convergence r = 1.05 # power u = prob ** r if prob < .5 else prob ** (1/r) return _weighted(temp, prob, s, u) def _parameterized_best(temp, prob): alpha = 5 beta = 1 s = .5 s = (alpha * prob + beta * s) / (alpha + beta) r = 1.05 u = prob ** r if prob < .5 else prob ** (1/r) return _weighted(temp, prob, s, u)