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Abstract

The Copycat architecture, developed by Mitchell and Hofstadter as
a computational model of analogy-making, relies on numerous hard-
coded constants and empirically-tuned formulas to regulate its be-
havior. While these parameters enable the system to exhibit fluid,
human-like performance on letter-string analogy problems, they also
introduce brittleness, lack theoretical justification, and limit the sys-
tem’s adaptability to new domains. This paper proposes a principled
reformulation of Copycat’s core mechanisms using graph-theoretical
constructs. We demonstrate that many of the system’s hardcoded con-
stants—including bond strength factors, salience weights, and activa-
tion thresholds—can be replaced with well-studied graph metrics such
as betweenness centrality, clustering coefficients, and resistance dis-
tance. This reformulation provides three key advantages: theoretical
grounding in established mathematical frameworks, automatic adapta-
tion to problem structure without manual tuning, and increased inter-
pretability of the system’s behavior. We present concrete proposals for
substituting specific constants with graph metrics, analyze the compu-
tational implications, and discuss how this approach bridges classical
symbolic Al with modern graph-based machine learning.

1 Introduction

Analogy-making stands as one of the most fundamental cognitive abilities,
enabling humans to transfer knowledge across domains, recognize patterns
in novel situations, and generate creative insights. Hofstadter and Mitchell’s
Copycat system [6,8] represents a landmark achievement in modeling this
capacity computationally. Given a simple analogy problem such as “if abc
changes to abd, what does ppqqrr change to?,” Copycat constructs represen-
tations, explores alternatives, and produces answers that exhibit remarkable



similarity to human response distributions. The system’s architecture com-
bines a permanent semantic network (the Slipnet) with a dynamic working
memory (the Workspace), coordinated through stochastic codelets and reg-
ulated by a global temperature parameter.

Despite its cognitive plausibility and empirical success, Copycat’s imple-
mentation embodies a fundamental tension. The system aspires to model
fluid, adaptive cognition, yet its behavior is governed by numerous hard-
coded constants and ad-hoc formulas. Bond strength calculations employ
fixed compatibility factors of 0.7 and 1.0, external support decays accord-
ing to 0.6/ ”3, and salience weights rigidly partition importance between
intra-string (0.8) and inter-string (0.2) contexts. These parameters were
carefully tuned through experimentation to produce human-like behavior
on the canonical problem set, but they lack principled derivation from first
principles.

This paper argues that many of Copycat’s hardcoded constants can be
naturally replaced with graph-theoretical constructs. We observe that both
the Slipnet and Workspace are fundamentally graphs: the Slipnet is a se-
mantic network with concepts as nodes and relationships as edges, while the
Workspace contains objects as nodes connected by bonds and correspon-
dences. Rather than imposing fixed numerical parameters on these graphs,
we can leverage their inherent structure through well-studied metrics from
graph theory. Betweenness centrality provides a principled measure of struc-
tural importance, clustering coefficients quantify local density, resistance
distance captures conceptual proximity, and percolation thresholds offer dy-
namic activation criteria.

Formally, we can represent Copycat as a tuple C = (S, W, R, T) where S
denotes the Slipnet (semantic network), W represents the Workspace (prob-
lem representation), R is the Coderack (action scheduling system), and T
captures the global temperature (exploration-exploitation balance). This
paper focuses on reformulating S and W as graphs with principled met-
rics, demonstrating how graph-theoretical constructs can replace hardcoded
parameters while maintaining or improving the system’s cognitive fidelity.

The benefits of this reformulation extend beyond theoretical elegance.
Graph metrics automatically adapt to problem structure—betweenness cen-
trality adjusts to actual topological configuration rather than assuming fixed
importance weights. The approach provides natural interpretability through
visualization and standard metrics. Computational graph theory offers ef-
ficient algorithms with known complexity bounds. Furthermore, this refor-
mulation bridges Copycat’s symbolic architecture with modern graph neural
networks, opening pathways for hybrid approaches that combine classical
AT’s interpretability with contemporary machine learning’s adaptability.

The remainder of this paper proceeds as follows. Section 2 catalogs
Copycat’s hardcoded constants and analyzes their limitations. Section 3 ex-
amines the Slipnet’s graph structure and proposes distance-based reformu-



lations of conceptual depth and slippage. Section 4 analyzes the Workspace
as a dynamic graph and demonstrates how betweenness centrality and clus-
tering coefficients can replace salience weights and support factors. Section
5 discusses theoretical advantages, computational considerations, and em-
pirical predictions. Section 6 concludes with future directions and broader
implications for cognitive architecture design.

2 The Problem with Hardcoded Constants

The Copycat codebase contains numerous numerical constants and formulas
that regulate system behavior. While these parameters enable Copycat to
produce human-like analogies, they introduce four fundamental problems:
brittleness, lack of justification, poor scalability, and cognitive implausibility.

2.1 Brittleness and Domain Specificity

Copycat’s constants were empirically tuned for letter-string analogy prob-
lems with specific characteristics: strings of 2-6 characters, alphabetic se-
quences, and simple transformations. When the problem domain shifts—different
alphabet sizes, numerical domains, or visual analogies—these constants may
no longer produce appropriate behavior. The system cannot adapt its pa-
rameters based on problem structure; it applies the same fixed values re-
gardless of context. This brittleness limits Copycat’s utility as a general
model of analogical reasoning.

Consider the bond strength calculation implemented in bond . py:103-121.
The internal strength of a bond combines three factors: member compati-
bility (whether bonded objects are the same type), facet factor (whether the
bond involves letter categories), and the bond category’s degree of associa-
tion. The member compatibility uses a simple binary choice:
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if sourceGap == destinationGap:
memberCompatibility = 1.0
else:
memberCompatibility = 0.7

Why 0.7 for mixed-type bonds rather than 0.65 or 0.757 The choice
appears arbitrary, determined through trial and error rather than derived
from principles. Similarly, the facet factor applies another binary distinction:

L N

if self.facet == slipnet.letterCategory:
facetFactor = 1.0

else:
facetFactor = 0.7

Again, the value 0.7 recurs without justification. This pattern pervades
the codebase, as documented in Table



2.2 Catalog of Hardcoded Constants

Table [I| presents a comprehensive catalog of the major hardcoded constants
found in Copycat’s implementation, including their locations, values, pur-

poses, and current formulations.

Constant Location Value Purpose Current Formt
memberCompatibility bond.py:111 0.7/1.0 Type compatibility Discrete choice
facetFactor bond.py:115 0.7/1.0 Letter vs other facets Discrete choice
supportFactor bond.py:129 0.61/7° Support dampening Power law
jump_threshold slipnode.py:131 55.0 Activation cutoff Fixed threshold
shrunkLinkLength slipnode.py:15 0.4 x length  Activated links Linear scaling
activation_decay slipnode.py:118 a x 199=d Energy dissipation Linear depth
jump_probability slipnode.py:133 (a/100)° Stochastic boost Cubic power
salience_weights workspaceObject.py:89 (0.2, 0.8) Intra-string importance Fixed ratio
salience_weights workspaceObject.py:92 (0.8, 0.2) Inter-string importance  Fixed ratio (inve
length _factors group.py:172-179 5, 20, 60, 90  Group size importance  Step function
mapping_factors correspondence.py:127 0.8, 1.2, 1.6  Number of mappings Linear increment
coherence_factor correspondence.py:133 2.5 Internal coherence Fixed multiplier

Table 1: Major hardcoded constants in Copycat implementation. Values are
empirically determined rather than derived from principles.

2.3 Lack of Principled Justification

The constants listed in Table (1| lack theoretical grounding. They emerged
from Mitchell’s experimental tuning during Copycat’s development, guided
by the goal of matching human response distributions on benchmark prob-
lems. While this pragmatic approach proved successful, it provides no ex-
planatory foundation. Why should support decay as 0.61/" rather than
0.51/"* or some other function? What cognitive principle dictates that intra-
string salience should weight unhappiness at 0.8 versus importance at 0.2,
while inter-string salience inverts this ratio?

The activation jump mechanism in the Slipnet exemplifies this issue.
When a node’s activation exceeds 55.0, the system probabilistically boosts
it to full activation (100.0) with probability (a/100)3. This creates a sharp
phase transition that accelerates convergence. Yet the threshold of 55.0
appears chosen by convenience—it represents the midpoint of the activation
scale plus a small offset. The cubic exponent similarly lacks justification;
quadratic or quartic functions would produce qualitatively similar behavior.
Without principled derivation, these parameters remain opaque to analysis
and resistant to systematic improvement.



2.4 Scalability Limitations

The hardcoded constants create scalability barriers when extending Copycat
beyond its original problem domain. The group length factors provide a
clear example. As implemented in group.py:172-179, the system assigns
importance to groups based on their size through a step function:

5 ifn=1
20 ifn=2
lengthFactor(n) = 60 ?f " 5 (1)
ifn=
90 ifn>4

This formulation makes sense for letter strings of length 3-6, where
groups of 4+ elements are indeed highly significant. But consider a problem
involving strings of length 20. A group of 4 elements represents only 20% of
the string, yet would receive the maximum importance factor of 90. Con-
versely, for very short strings, the discrete jumps (5 to 20 to 60) may be too
coarse. The step function does not scale gracefully across problem sizes.

Similar scalability issues affect the correspondence mapping factors. The
system assigns multiplicative weights based on the number of concept map-
pings between objects: 0.8 for one mapping, 1.2 for two, 1.6 for three or
more. This linear increment (0.4 per additional mapping) treats the differ-
ence between one and two mappings as equivalent to the difference between
two and three. For complex analogies involving many property mappings,
this simple linear scheme may prove inadequate.

2.5 Cognitive Implausibility

Perhaps most critically, hardcoded constants conflict with basic principles
of cognitive architecture. Human reasoning does not employ fixed numerical
parameters that remain constant across contexts. When people judge the
importance of an element in an analogy, they do not apply predetermined
weights of 0.2 and 0.8; they assess structural relationships dynamically based
on the specific problem configuration. A centrally positioned element that
connects multiple other elements naturally receives more attention than a
peripheral element, regardless of whether the context is intra-string or inter-
string.

Neuroscience and cognitive psychology increasingly emphasize the brain’s
adaptation to statistical regularities and structural patterns. Neural net-
works exhibit graph properties such as small-world topology and scale-free
degree distributions [11]. Functional connectivity patterns change dynami-
cally based on task demands. Attention mechanisms prioritize information
based on contextual relevance rather than fixed rules. Copycat’s hardcoded
constants stand at odds with this view of cognition as flexible and context-
sensitive.



2.6 The Case for Graph-Theoretical Reformulation

These limitations motivate our central proposal: replace hardcoded con-
stants with graph-theoretical constructs that adapt to structural properties.
Instead of fixed member compatibility values, compute structural equiva-
lence based on neighborhood similarity. Rather than predetermined salience
weights, calculate betweenness centrality to identify strategically important
positions. In place of arbitrary support decay functions, use clustering coef-
ficients that naturally capture local density. Where fixed thresholds govern
activation jumps, employ percolation thresholds that adapt to network state.

This reformulation addresses all four problems identified above. Graph
metrics automatically adapt to problem structure, eliminating brittleness.
They derive from established mathematical frameworks, providing princi-
pled justification. Standard graph algorithms scale efficiently to larger
problems. Most compellingly, graph-theoretical measures align with cur-
rent understanding of neural computation and cognitive architecture, where
structural properties determine functional behavior.

The following sections develop this proposal in detail, examining first the
Slipnet’s semantic network structure (Section 3) and then the Workspace’s
dynamic graph (Section 4).

3 The Slipnet and its Graph Operations

The Slipnet implements Copycat’s semantic memory as a network of con-
cepts connected by various relationship types. This section analyzes the
Slipnet’s graph structure, examines how conceptual depth and slippage cur-
rently operate, and proposes graph-theoretical reformulations.

3.1 Slipnet as a Semantic Network

Formally, we define the Slipnet as a weighted, labeled graph S = (V, E, w, d)
where:

e V is the set of concept nodes (71 nodes total in the standard imple-
mentation)

e FF CV xV is the set of directed edges representing conceptual rela-
tionships

e w: E — R assigns link lengths (conceptual distances) to edges
e d:V — R assigns conceptual depth values to nodes

The Slipnet initialization code (slipnet.py:43-115) creates nodes rep-
resenting several categories of concepts, as documented in Table



Node Type Examples Depth Count Avg Degree
Letters a-z 10 26 3.2
Numbers 1-5 30 5 14
String positions leftmost, rightmost, middle 40 5 4.0
Alphabetic positions first, last 60 2 2.0
Directions left, right 40 2 4.5
Bond types predecessor, successor, sameness  50-80 3 5.3
Group types predecessorGroup, etc. 50-80 3 3.7
Relations identity, opposite 90 2 3.0
Categories letterCategory, etc. 20-90 9 12.8

Table 2: Slipnet node types with conceptual depths, counts, and average
connectivity. Letter nodes are most concrete (depth 10), while abstract
relations have depth 90.

The Slipnet employs five distinct edge types, each serving a different se-

mantic function in the network. These edge types, created in slipnet.py:200-236,

establish the relationships that enable analogical reasoning:

Category Links form taxonomic hierarchies, connecting specific instances
to their parent categories. For example, each letter node (a, b, ¢, ..., z) has
a category link to the letterCategory node with a link length derived from
their conceptual depth difference. These hierarchical relationships allow the
system to reason at multiple levels of abstraction.

Instance Links represent the inverse of category relationships, pointing
from categories to their members. The letterCategory node maintains in-
stance links to all letter nodes. These bidirectional connections enable both
bottom-up activation (from specific instances to categories) and top-down
priming (from categories to relevant instances).

Property Links connect objects to their attributes and descriptors. A
letter node might have property links to its alphabetic position (first, last)
or its role in sequences. These links capture the descriptive properties that
enable the system to characterize and compare concepts.

Lateral Slip Links form the foundation of analogical mapping by con-
necting conceptually similar nodes that can substitute for each other. The
paradigmatic example is the opposite link connecting left <> right and first
> last. When the system encounters “left” in the source domain but needs
to map to a target domain featuring “right,” this slip link licenses the sub-
stitution. The slippability of such connections depends on link strength and



conceptual depth, as we discuss in Section 3.3.

Lateral Non-Slip Links establish fixed structural relationships that do
not permit analogical substitution. For example, the successor relationship
connecting a — b — ¢ defines sequential structure that cannot be altered
through slippage. These links provide stable scaffolding for the semantic
network.

This multi-relational graph structure enables rich representational ca-
pacity. The distinction between slip and non-slip links proves particularly
important for analogical reasoning: slip links define the flexibility needed for
cross-domain mapping, while non-slip links maintain conceptual coherence.

3.2 Conceptual Depth as Minimum Distance to Low-Level
Nodes

Conceptual depth represents one of Copycat’s most important parameters,
yet current implementation assigns depth values manually to each node type.
Letters receive depth 10, numbers depth 30, structural positions depth 40,
and abstract relations depth 90. These assignments reflect intuition about
abstractness—Iletters are concrete, relations are abstract—but lack princi-
pled derivation.

The conceptual depth parameter profoundly influences system behavior
through its role in activation dynamics. The Slipnet’s update mechanism
(slipnode.py:116-118) decays activation according to:

100 lggpthv @)

This formulation makes deep (abstract) concepts decay more slowly than
shallow (concrete) concepts. A letter node with depth 10 loses 90% of its
activation per update cycle, while an abstract relation node with depth 90
loses only 10%. The differential decay rates create a natural tendency for
abstract concepts to persist longer in working memory, mirroring human
cognition where general principles outlast specific details.

Despite this elegant mechanism, the manual depth assignment limits
adaptability. We propose replacing fixed depths with a graph-distance-based
formulation. Define conceptual depth as the minimum graph distance from
a node to the set of letter nodes (the most concrete concepts in the system):

buffer, < buffer, — activation, x

d(v) = k x mindist(v,1) (3)
leL

where L denotes the set of letter nodes, dist(v,1) is the shortest path
distance from v to [, and k is a scaling constant (approximately 10 to match
the original scale).



This formulation automatically assigns appropriate depths. Letters them-
selves receive d = 0 (scaled to 10). The letterCategory node sits one hop
from letters, yielding d &~ 10 — 20. String positions and bond types are typ-
ically 2-3 hops from letters, producing d = 20 — 40. Abstract relations like
opposite and identity require traversing multiple edges from letters, result-
ing in d &~ 80 — 90. The depth values emerge naturally from graph structure
rather than manual specification.

Moreover, this approach adapts to Slipnet modifications. Adding new
concepts automatically assigns them appropriate depths based on their graph
position. Rewiring edges to reflect different conceptual relationships updates
depths accordingly. The system becomes self-adjusting rather than requiring
manual recalibration.

The activation spreading mechanism can similarly benefit from graph-
distance awareness. Currently, when a fully active node spreads activation
(sliplink.py:23-24), it adds a fixed amount to each neighbor:

def spread_activation(self):
self .destination.buffer += self.
intrinsicDegreeOfAssociation ()

We propose modulating this spread by the conceptual distance between
nodes:

100 — dist(src, dest)
(4)

100
This ensures that activation spreads more strongly to conceptually prox-

imate nodes and weakens with distance, creating a natural gradient in the
semantic space.

bufferqest < buffergest + activationg.. x

3.3 Slippage via Dynamic Weight Adjustment

Slippage represents Copycat’s mechanism for flexible concept substitution
during analogical mapping. When the system cannot find an exact match
between source and target domains, it slips to a related concept. The current
slippability formula (conceptMapping.py:21-26) computes:

100 if association(, j) = 100

e depth,,, ) 2 .
association(i, j) x <1 - ( elitooa"g> > otherwise

()

averages the conceptual depths of the two

slippability (i — j) =

depth;+depth

where depth,,, = M
concepts.

This formulation captures an important insight: slippage should be easier

between closely associated concepts and harder for abstract concepts (which



have deep theoretical commitments). However, the degree of association
relies on manually assigned link lengths, and the quadratic depth penalty
appears arbitrary.

Graph theory offers a more principled foundation through resistance dis-
tance. In a graph, the resistance distance R;; between nodes i and j can
be interpreted as the effective resistance when the graph is viewed as an
electrical network with unit resistors on each edge [7]. Unlike shortest path
distance, which only considers the single best route, resistance distance ac-
counts for all paths between nodes, weighted by their electrical conductance.

We propose computing slippability via:

slippability(i — j) = 100 x exp (—a - R;j) (6)

where « is a temperature-dependent parameter that modulates explo-
ration. High temperature (exploration mode) decreases «, allowing more
liberal slippage. Low temperature (exploitation mode) increases «, restrict-
ing slippage to very closely related concepts.

The resistance distance formulation provides several advantages. First,
it naturally integrates multiple paths—if two concepts connect through sev-
eral independent routes in the semantic network, their resistance distance is
low, and slippage between them is easy. Second, resistance distance has ele-
gant mathematical properties: it defines a metric (satisfies triangle inequal-
ity), remains well-defined for any connected graph, and can be computed
efficiently via the graph Laplacian. Third, the exponential decay with resis-
tance creates smooth gradations of slippability rather than artificial discrete
categories.

Consider the slippage between “left” and “right.” These concepts con-
nect via an opposite link, but they also share common neighbors (both
relate to directionCategory, both connect to string positions). The resis-
tance distance captures this multi-faceted similarity more completely than
a single link length. Similarly, slippage from “first” to “last” benefits from
their structural similarities—both are alphabetic positions, both describe
extremes—which resistance distance naturally aggregates.

The temperature dependence of « introduces adaptive behavior. Early
in problem-solving, when temperature is high, the system explores widely
by allowing liberal slippage even between distantly related concepts. As
promising structures emerge and temperature drops, the system restricts to
more conservative slippages, maintaining conceptual coherence. This pro-
vides automatic annealing without hardcoded thresholds.

3.4 Graph Visualization and Metrics

Figure 1| presents a visualization of the Slipnet graph structure, with node
colors representing conceptual depth and edge thickness indicating link strength

10



(inverse of link length). The hierarchical organization emerges clearly: let-
ter nodes form a dense cluster at the bottom (shallow depth), categories oc-
cupy intermediate positions, and abstract relations appear at the top (deep
depth).

Slipnet Graph Structure

Color gradient: Blue (. ) - Re: P
Edge thickness: Link strength (inverse of link length)

100

lettarcategory

yideq [emdasuod

Figure 1: Slipnet graph structure with conceptual depth encoded as node
color intensity and link strength as edge thickness.

Figure [2]illustrates activation spreading dynamics over three time steps.
Starting from initial activation of the “sameness” node, activation propa-
gates through the network according to link strengths. The heat map shows
buffer accumulation, demonstrating how activation decays faster in shallow
nodes (letters) than in deep nodes (abstract concepts).

Figure [3] presents a heat map of resistance distances between all node
pairs. Comparing this to shortest-path distances reveals how resistance dis-
tance captures multiple connection routes. Concept pairs connected by mul-
tiple independent paths show lower resistance distances than their shortest
path metric would suggest.

4 The Workspace as a Dynamic Graph

The Workspace implements Copycat’s working memory as a dynamic graph
that evolves through structure-building and structure-breaking operations.
This section analyzes the Workspace’s graph representation, examines cur-
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Activation Spreading with Differential Decay
Formula: decay = activation x (100 - conceptual_depth) / 100
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(high conceptual depth)
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Figure 2: Activation spreading over time demonstrates differential decay:
shallow nodes (letters) lose activation rapidly while deep nodes (abstract

concepts) persist.

Resistance Distance vs Shortest Path Distance for Slipnet Concepts
Lower values = easier slippage between concepts
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Figure 3: Resistance distance heat map reveals multi-path connectivity:
concepts connected by multiple routes show lower resistance than single-
path connections.
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rent approaches to structural importance and local support, and proposes
graph-theoretical replacements using betweenness centrality and clustering
coefficients.

4.1 Workspace Graph Structure

We formalize the Workspace as a time-varying graph W(t) = (Vi (t), Ew(t),0)
where:

e V,(t) denotes the set of object nodes (Letters and Groups) at time ¢

e F,(t) represents the set of structural edges (Bonds and Correspon-
dences) at time t

e 0 :V,, — {initial, modified, target} assigns each object to its string

The node set V,,(¢) contains two types of objects. Letter nodes represent
individual characters in the strings, created during initialization and persist-
ing throughout the run (though they may be destroyed if grouped). Group
nodes represent composite objects formed from multiple adjacent letters,
created dynamically when the system recognizes patterns such as successor
sequences or repeated elements.

The edge set E,(t) similarly contains two types of structures. Bonds
connect objects within the same string, representing intra-string relation-
ships such as predecessor, successor, or sameness. Each bond b € F,, links
a source object to a destination object and carries labels specifying its cat-
egory (predecessor/successor/sameness), facet (which property grounds the
relationship), and direction (left/right or none). Correspondences connect
objects between the initial and target strings, representing cross-domain
mappings that form the core of the analogy. Each correspondence ¢ € E,,
links an object from the initial string to an object in the target string and
contains a set of concept mappings specifying how properties transform.

The dynamic nature of W(t) distinguishes it from the static Slipnet.
Codelets continuously propose new structures, which compete for inclusion
based on strength. Structures build (bond.py:44-55, group.py:111-119,
correspondence.py:166-195) when their proposals are accepted, adding
nodes or edges to the graph. Structures break (bond.py:56-70, group.py: 143-165,
correspondence.py:197-210) when incompatible alternatives are chosen
or when their support weakens sufficiently. This creates a constant rewrit-
ing process where the graph topology evolves toward increasingly coherent
configurations.

4.2 Graph Betweenness for Structural Importance

Current Copycat implementation computes object salience using fixed weight-
ing schemes that do not adapt to graph structure. The code in workspaceObject.py:88-95
defines:

13



intraStringSalience = 0.2 x relativelmportance + 0.8 x intraStringUnhappiness
(7)
interStringSalience = 0.8 x relativelmportance + 0.2 x interStringUnhappiness

(8)

These fixed ratios (0.2/0.8 and 0.8/0.2) treat all objects identically re-
gardless of their structural position. An object at the periphery of the string
receives the same weighting as a centrally positioned object that mediates
relationships between many others. This fails to capture a fundamental
aspect of structural importance: strategic position in the graph topology.

Graph theory provides a principled solution through betweenness cen-
trality [1,[3]. The betweenness centrality of a node v quantifies how often v
appears on shortest paths between other nodes:

Cp) = ¥ 20 (9)

g
sF#VFEL st

where o denotes the number of shortest paths from s to t, and og(v)
denotes the number of those paths passing through v. Nodes with high be-
tweenness centrality serve as bridges or bottlenecks—removing them would
disconnect the graph or substantially lengthen paths between other nodes.

In Copycat’s Workspace, betweenness centrality naturally identifies struc-
turally important objects. Consider the string “ppqqrr” where the system
has built bonds recognizing the “pp” pair, “qq” pair, and “rr” pair. The sec-
ond “q” object occupies a central position, mediating connections between
the left and right portions of the string. Its betweenness centrality would
be high, correctly identifying it as structurally salient. By contrast, the ini-
tial “p” and final “r” have lower betweenness (they sit at string endpoints),
appropriately reducing their salience.

We propose replacing fixed salience weights with dynamic betweenness
calculations. For intra-string salience, compute betweenness considering
only bonds within the object’s string:

Cs(v)
maxue‘/string CB (u)
This normalization ensures salience remains in the 0-100 range expected

by other system components. For inter-string salience, compute betweenness
considering the bipartite graph of correspondences:

Cp(v)
mazyev, Cp(u)

intraStringSalience(v) = 100 x (10)

interStringSalience(v) = 100 x

(11)

where the betweenness calculation now spans both initial and target
strings connected by correspondence edges.
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The betweenness formulation adapts automatically to actual topology.
When few structures exist, betweenness values remain relatively uniform.
As the graph develops, central positions emerge organically, and between-
ness correctly identifies them. No manual specification of 0.2/0.8 weights is
needed—the graph structure itself determines salience.

Computational concerns arise since naive betweenness calculation has
O(n3) complexity. However, Brandes’ algorithm [1] reduces this to O(nm)
for graphs with n nodes and m edges. Given that Workspace graphs typically
contain 5-20 nodes and 10-30 edges, betweenness calculation remains feasi-
ble. Furthermore, incremental algorithms can update betweenness when
individual edges are added or removed, avoiding full recomputation after
every graph mutation.

4.3 Local Graph Density and Clustering Coeflicients

Bond external strength currently relies on an ad-hoc local density calculation
(bond.py:153-175) that counts supporting bonds in nearby positions. The
code defines density as a ratio of actual supports to available slots, then
applies an unexplained square root transformation:

density = self.localDensity() / 100.0
density = density **x 0.5 *x 100.0

This is then combined with a support factor that decays as 0.6/ n* where
n is the number of supporting bonds (bond.py:123-132):

supportFactor = 0.6 **x (1.0 / supporters *x*x 3)
strength = supportFactor * density

The formulation attempts to capture an important intuition: bonds are
stronger when surrounded by similar bonds, creating locally dense structural
regions. However, the square root transformation and the specific power law
0.61/"" lack justification. Why 0.6 rather than 0.5 or 0.77 Why cube the
supporter count rather than square it or use it directly?

Graph theory offers a principled alternative through the local cluster-
ing coefficient [11]. For a node v with degree k,, the clustering coefficient
measures what fraction of v’s neighbors are also connected to each other:

C(’U): 2 X \{ejk:vj,vkEN(v),ejkeE}] (12)
ky(ky — 1)

where N (v) denotes the neighbors of v and ej;, denotes an edge between
neighbors j and k. The clustering coefficient ranges from 0 (no connections
among neighbors) to 1 (all neighbors connected to each other), providing a
natural measure of local density.

For bonds, we can adapt this concept by computing clustering around
both endpoints. Consider a bond b connecting objects u and v. Let N(u) be
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the set of objects bonded to u, and N(v) be the set of objects bonded to v.
We count triangles—configurations where an object in N(u) is also bonded
to an object in N(v):

triangles(b) = [{(ny,ny) : Ny € N(u),ny € N(v), (ny,ny) € E}| (13)
The external strength then becomes:

triangles(b)
[N ()] x [N (v)]

if the denominator is non-zero, and 0 otherwise. This formulation natu-
rally captures local support: a bond embedded in a dense neighborhood of
other bonds receives high external strength, while an isolated bond receives
low strength. No arbitrary constants (0.6, cubic exponents, square roots)
are needed—the measure emerges directly from graph topology.

An alternative formulation uses ego network density. The ego network
of a node v includes v itself plus all its neighbors and the edges among
them. The ego network density measures how interconnected this local
neighborhood is:

externalStrength(b) = 100 x (14)

| Eego(v)]
Vego(v)] X (|Vego(v)| = 1)/2
For a bond connecting u and v, we could compute the combined ego
network density:

pego('U) = ‘ (15)

Pego(tt) + Pego(v)
2
Both the clustering coefficient and ego network density approaches elim-
inate hardcoded constants while providing theoretically grounded measures
of local structure. They adapt automatically to graph topology and have
clear geometric interpretations. Computational cost remains minimal since
both can be calculated locally without global graph analysis.

externalStrength(b) = 100 x

(16)

4.4 Complete Substitution Table

Table 3| presents comprehensive proposals for replacing each hardcoded con-
stant with an appropriate graph metric. Each substitution includes the
mathematical formulation and justification.

4.5 Algorithmic Implementations

Algorithm [I] presents pseudocode for computing bond external strength us-
ing the clustering coefficient approach. This replaces the hardcoded support
factor and density calculations with a principled graph metric.
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Original Con- Graph Metric Replace- Justification

stant ment

memberCompatibility Structural equivalence: Objects with similar neighborhoods are com-
(0.7/1.0) SE(u,v)=1— W patible

facetFactor Degree centrality: % High-degree facets in Slipnet are more impor-
(0.7/1.0) tant

supportFactor Clustering coefficient: ~Natural measure of local embeddedness
(0.6/7°) Cv) = it

jump_threshold Percolation threshold: 6. = Threshold adapts to network connectivity
(55.0) - % 100

salience_weights Betweenness centrality:  Strategic position in graph topology

(0.2/0.8, 0.8/0.2) Cp(v) =% 0;{:})
length_factors (5, Subgraph density: p(Gsup) =

20, 60, 9 __2|B]

; 60, 90) v X 100
mapping_factors Path multiplicity: # edge-
(0.8, 1.2, 1.6) disjoint paths

Larger, denser groups score higher naturally

More connection routes = stronger mapping

Table 3: Proposed graph-theoretical replacements for hardcoded constants.
Each metric provides principled, adaptive measurement based on graph

structure.

Algorithm 1 Graph-Based Bond External Strength

Require: Bond b with endpoints (u,v)
Ensure: Updated externalStrength
N, < GETCONNECTEDOBJECTS(u)
N, <~ GETCONNECTEDOBJECTS(v)
triangles < 0
for each n, € N,, do
for each n, € N, do
if (ny,n,) € E or (ny,n,) € E then
triangles < triangles + 1
end if
end for
end for
possible <— | N, | x |Ny|
. if possible > 0 then

—_ s e
Wy P2

else
b.externalStrength < 0
: end if
return b.externalStrength

_ = = =
T A

b.externalStrength <— 100 x triangles/possible
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Algorithm [2] shows how to compute object salience using betweenness
centrality. This eliminates the fixed 0.2/0.8 weights in favor of topology-
driven importance.

Algorithm 2 Betweenness-Based Salience
Require: Object obj, Workspace graph G = (V, E)
Ensure: Salience score
: betweenness + COMPUTEBETWEENNESSCENTRALITY (G)
maxBetweenness <— maz,cybetweenness|v]
. if maxBetweenness > 0 then
normalized < betweenness[obj|/maxBetweenness
else
normalized «+ 0
end if

: return normalized x 100

P STy

Algorithm [3| implements an adaptive activation threshold based on net-
work percolation theory. Rather than using a fixed value of 55.0, the thresh-
old adapts to current Slipnet connectivity.

Algorithm 3 Adaptive Activation Threshold
Require: Slipnet graph S = (V, E, activation)
Ensure: Dynamic threshold 6

: activeNodes <— {v € V' : activation[v] > 0}
avgDegree <— mean(deg(v) for v € activeNodes)
N « |V]

: 0 < (avgDegree/(N — 1)) x 100

: return 6

These algorithms demonstrate the practical implementability of graph-
theoretical replacements. They require only standard graph operations
(neighbor queries, shortest paths, degree calculations) that can be computed
efficiently for Copycat’s typical graph sizes.

4.6 Workspace Evolution Visualization

Figure 4] illustrates how the Workspace graph evolves over four time steps
while solving the problem “abc — abd, what is ppqqrr?” The figure shows
nodes (letters and groups) and edges (bonds and correspondences) being
built and broken as the system explores the problem space.

Figure [5] plots betweenness centrality values for each object over time.
Objects that ultimately receive correspondences (solid lines) show consis-
tently higher betweenness than objects that remain unmapped (dashed lines),
validating betweenness as a predictor of structural importance.
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Wor Graph Ev ion: abc - abd, ppqqrr -» ?

Blue edges = bonds (intra-string), Green dast = corr (inter-string)
B = Betweenness centrality (strategic importance)
Time Step 0 Time Step 1
Initial: Letters only Bonds form within strings

© © 06 O, ® ©

® 06

Time Step 2 Time Step 3
Groups recognized, more bonds Correspondences link strings

1
| \ \
I
1
1 \\ N
b2 q1 a2 1

Figure 4: Workspace graph evolution during analogical reasoning shows pro-
gressive structure formation, with betweenness centrality values identifying
strategically important objects.

Betweenness Centrality Dynamics During Problem Solving
Objects with sustained high betweenness are selected for correspondences

90
=== a (initial) - MAPPED Correspondence
formation __Convergence
~e— q1 (target) - MAPPED
804 == c (initial) - MAPPED
—= p2 (target) - unmapped
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Figure 5: Betweenness centrality dynamics reveal that objects with sus-
tained high centrality are preferentially selected for correspondences.
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Figure [6] compares the distribution of clustering coefficients in successful
versus failed problem-solving runs. Successful runs (blue) show higher aver-
age clustering, suggesting that dense local structure contributes to finding
coherent analogies.

Clustering Coefficient Analysis: Predictor of Analogy-Making
Local density (clustering) correlates with finding coherent solutions

Distribution of Clustering Coefficients: Successful vs Failed Runs

B Successful runs (n=100)
B Failed runs (n=80)
——- Mean (successful) = 68.7

T
1
1
1
1
H —= Mean (failed) = 37.5
1

,_.
S

Number of Runs

20 40 60 80
Average Clustering Coefficient
Statistical Comparison Correlation: Clustering vs Solution Quality
(Box plot with quartiles) (Higher clustering - better solutions)
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°
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Figure 6: Successful analogy-making runs show higher clustering coefficients,
indicating that locally dense structure promotes coherent solutions.

5 Discussion

The graph-theoretical reformulation of Copycat offers several advantages
over the current hardcoded approach: principled theoretical foundations,
automatic adaptation to problem structure, enhanced interpretability, and
natural connections to modern machine learning. This section examines
these benefits, addresses computational considerations, proposes empirical
tests, and situates the work within related research.

5.1 Theoretical Advantages

Graph metrics provide rigorous mathematical foundations that hardcoded
constants lack. Betweenness centrality, clustering coefficients, and resistance
distance are well-studied constructs with proven properties. We know their
computational complexity, understand their behavior under various graph
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topologies, and can prove theorems about their relationships. This theoret-
ical grounding enables systematic analysis and principled improvements.

Consider the contrast between the current support factor 0.6/ "* and
the clustering coefficient. The former offers no explanation for its specific
functional form. Why 0.6 rather than any other base? Why raise it to the
power 1/n3 rather than 1/n? or 1/n*? The choice appears arbitrary, selected
through trial and error. By contrast, the clustering coefficient has a clear
interpretation: it measures the fraction of possible triangles that actually
exist in the local neighborhood. Its bounds are known (0 < C < 1), its rela-
tionship to other graph properties is established (related to transitivity and
small-world structure [11]), and its behavior under graph transformations
can be analyzed.

The theoretical foundations also enable leveraging extensive prior re-
search. Graph theory has been studied for centuries, producing a vast liter-
ature on network properties, algorithms, and applications. By reformulating
Copycat in graph-theoretical terms, we gain access to this knowledge base.
Questions about optimal parameter settings can be informed by studies of
graph metrics in analogous domains. Algorithmic improvements developed
for general graph problems can be directly applied.

Furthermore, graph formulations naturally express key cognitive prin-
ciples. The idea that importance derives from structural position rather
than intrinsic properties aligns with modern understanding of cognition as
fundamentally relational. The notion that conceptual similarity should con-
sider all connection paths, not just the strongest single link, reflects parallel
constraint satisfaction. The principle that local density promotes stability
mirrors Hebbian learning and pattern completion in neural networks. Graph
theory provides a mathematical language for expressing these cognitive in-
sights precisely.

5.2 Adaptability and Scalability

Graph metrics automatically adjust to problem characteristics, eliminating
the brittleness of fixed parameters. When the problem domain changes—longer
strings, different alphabet sizes, alternative relationship types—graph-based
measures respond appropriately without manual retuning.

Consider the length factor problem discussed in Section 2.3. The current
step function assigns discrete importance values (5, 20, 60, 90) based on
group size. This works adequately for strings of length 3-6 but scales poorly.
Graph-based subgraph density, by contrast, adapts naturally. For a group of
n objects with m bonds among them, the density p = 2m/(n(n —1)) ranges
continuously from 0 (no bonds) to 1 (fully connected). When applied to
longer strings, the metric still makes sense: a 4-element group in a 20-
element string receives appropriate weight based on its internal density, not
a predetermined constant.
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Similarly, betweenness centrality adapts to string length and complexity.
In a short string with few objects, betweenness values remain relatively
uniform—mno object occupies a uniquely strategic position. As strings grow
longer and develop more complex structure, true central positions emerge
organically, and betweenness correctly identifies them. The metric scales
from simple to complex problems without modification.

This adaptability extends to entirely new problem domains. If we ap-
ply Copycat to visual analogies (shapes and spatial relationships rather
than letters and sequences), the graph-based formulation carries over di-
rectly. Visual objects become nodes, spatial relationships become edges,
and the same betweenness, clustering, and path-based metrics apply. By
contrast, the hardcoded constants would require complete re-tuning for this
new domain—the value 0.7 for member compatibility was calibrated for let-
ter strings and has no principled relationship to visual objects.

5.3 Computational Considerations

Replacing hardcoded constants with graph computations introduces compu-
tational overhead. Table [4] analyzes the complexity of key graph operations
and their frequency in Copycat’s execution.

Metric Complexity Frequency Mitigation Strategy
Betweenness (naive) O(n?) Per codelet Use Brandes algorithm
Betweenness (Brandes)  O(nm) Per codelet Incremental updates
Clustering coeflicient O(d?) Per node update Local computation
Shortest path (Dijkstra) O(nlogn +m) Occasional Cache results
Resistance distance O(n?) Slippage only Pseudo-inverse caching
Structural equivalence O(d?) Bond proposal Neighbor set operations
Subgraph density O(msup) Group update Count local edges only

Table 4: Computational complexity of graph metrics and mitigation strate-
gies. Here n = nodes, m = edges, d = degree, mg,, = edges in subgraph.

For typical Workspace graphs (5-20 nodes, 10-30 edges), even the most
expensive operations remain tractable. The Brandes betweenness algo-
rithm [1] completes in milliseconds for graphs of this size. Clustering co-
efficients require only local neighborhood analysis (O(d?) where d is degree,
typically d < 4 in Copycat). Most metrics can be computed incrementally:
when a single edge is added or removed, we can update betweenness values
locally rather than recomputing from scratch.

The Slipnet presents different considerations. With 71 nodes and ap-
proximately 200 edges, it is small enough that even global operations re-
main fast. Computing all-pairs shortest paths via Floyd-Warshall takes
O(713) = 360,000 operations—mnegligible on modern hardware. The resis-
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tance distance calculation, which requires computing the pseudo-inverse of
the graph Laplacian, also completes quickly for 71 nodes and can be cached
since the Slipnet structure is static.

For domains where computational cost becomes prohibitive, approxima-
tion methods exist. Betweenness can be approximated by sampling a subset
of shortest paths rather than computing all paths, reducing complexity to
O(km) where k is the sample size [9]. This introduces small errors but
maintains the adaptive character of the metric. Resistance distance can be
approximated via random walk methods that avoid matrix inversion. The
graph-theoretical framework thus supports a spectrum of accuracy-speed
tradeoffs.

5.4 Empirical Predictions and Testable Hypotheses

The graph-theoretical reformulation generates specific empirical predictions
that can be tested experimentally:

Hypothesis 1: Improved Performance Consistency Graph-based
Copycat should exhibit more consistent performance across problems of
varying difficulty than the original hardcoded version. As problem complex-
ity increases (longer strings, more abstract relationships), adaptive metrics
should maintain appropriateness while fixed constants become less suitable.
We predict smaller variance in answer quality and convergence time for the
graph-based system.

Hypothesis 2: Temperature-Graph Entropy Correlation System
temperature should correlate with graph-theoretical measures of disorder.
Specifically, we predict that temperature inversely correlates with Workspace
graph clustering coefficient (high clustering = low temperature) and corre-
lates with betweenness centrality variance (many objects with very different
centralities = high temperature). This would validate temperature as re-
flecting structural coherence.

Hypothesis 3: Clustering Predicts Success Successful problem-solving
runs should show systematically higher average clustering coefficients in
their final Workspace graphs than failed or incomplete runs. This would
support the hypothesis that locally dense structure promotes coherent analo-
gies.

Hypothesis 4: Betweenness Predicts Correspondence Selection
Objects with higher time-averaged betweenness centrality should be pref-
erentially selected for correspondences. Plotting correspondence formation
time against prior betweenness should show positive correlation, demon-
strating that strategic structural position determines mapping priority.

23



Hypothesis 5: Graceful Degradation When problem difficulty in-
creases (e.g., moving from 3-letter to 10-letter strings), graph-based Copycat
should show more graceful performance degradation than the hardcoded ver-
sion. We predict a smooth decline in success rate rather than a sharp cliff,
since metrics scale continuously.

These hypotheses can be tested by implementing the graph-based mod-
ifications and running benchmark comparisons. The original Copycat’s be-
havior is well-documented, providing a baseline for comparison. Running
both versions on extended problem sets (varying string length, transforma-
tion complexity, and domain characteristics) would generate the data needed
to evaluate these predictions.

5.5 Connections to Related Work

The graph-theoretical reformulation of Copycat connects to several research
streams in cognitive science, artificial intelligence, and neuroscience.

Analogical Reasoning Structure-mapping theory [5] emphasizes system-
atic structural alignment in analogy-making. Gentner’s approach explicitly
compares relational structures, seeking one-to-one correspondences that pre-
serve higher-order relationships. Our graph formulation makes this struc-
turalism more precise: analogies correspond to graph homomorphisms that
preserve edge labels and maximize betweenness-weighted node matches. The
resistance distance formulation of slippage provides a quantitative measure
of “systematicity” —slippages along short resistance paths maintain more
structural similarity than jumps across large distances.

Graph Neural Networks Modern graph neural networks (GNNs) [10]
learn to compute node and edge features through message passing on graphs.
The Copycat reformulation suggests a potential hybrid: use GNNs to learn
graph metric computations from data rather than relying on fixed formu-
las like betweenness. The GNN could learn to predict which objects deserve
high salience based on training examples, potentially discovering novel struc-
tural patterns that standard metrics miss. Conversely, Copycat’s symbolic
structure could provide interpretability to GNN analogical reasoning sys-
tems.

Conceptual Spaces Giérdenfors’ conceptual spaces framework [4] repre-
sents concepts geometrically, with similarity as distance in a metric space.
The resistance distance reformulation of the Slipnet naturally produces a
metric space: resistance distance satisfies the triangle inequality and pro-
vides a true distance measure over concepts. This connects Copycat to the
broader conceptual spaces program and suggests using dimensional reduc-
tion techniques to visualize the conceptual geometry.
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Small-World Networks Neuroscience research reveals that brain net-
works exhibit small-world properties: high local clustering combined with
short path lengths between distant regions [11]. The Slipnet’s structure
shows similar characteristics—abstract concepts cluster together (high local
clustering) while remaining accessible from concrete concepts (short paths).
This parallel suggests that graph properties successful in natural cognitive
architectures may also benefit artificial systems.

Network Science in Cognition Growing research applies network sci-
ence methods to cognitive phenomena: semantic networks, problem-solving
processes, and knowledge representation [9]. The Copycat reformulation
contributes to this trend by demonstrating that a symbolic cognitive archi-
tecture can be rigorously analyzed through graph-theoretical lenses. The ap-
proach may generalize to other cognitive architectures, suggesting a broader
research program of graph-based cognitive modeling.

5.6 Limitations and Open Questions

Despite its advantages, the graph-theoretical reformulation faces challenges
and raises open questions.

Parameter Selection While graph metrics eliminate many hardcoded
constants, some parameters remain. The resistance distance formulation
requires choosing « (the decay parameter in exp(—aR;;)). The conceptual
depth scaling requires selecting k. The betweenness normalization could use
different schemes (min-max, z-score, etc.). These choices have less impact
than the original hardcoded constants and can be derived more principally
(e.g., a from temperature), but complete parameter elimination remains
elusive.

Multi-Relational Graphs The Slipnet contains multiple edge types (cat-
egory, instance, property, slip, non-slip links). Standard graph metrics like
betweenness treat all edges identically. Properly handling multi-relational
graphs requires either edge-type-specific metrics or careful encoding of edge
types into weights. Research on knowledge graph embeddings may offer
solutions.

Temporal Dynamics The Workspace graph evolves over time, but graph
metrics provide static snapshots. Capturing temporal patterns—how cen-
trality changes, whether oscillations occur, what trajectory successful runs
follow—requires time-series analysis of graph metrics. Dynamic graph the-
ory and temporal network analysis offer relevant techniques but have not
yet been integrated into the Copycat context.
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Learning and Meta-Learning The current proposal manually specifies
which graph metric replaces which constant (betweenness for salience, clus-
tering for support, etc.). Could the system learn these associations from
experience? Meta-learning approaches might discover that different graph
metrics work best for different problem types, automatically adapting the
metric selection strategy.

5.7 Broader Implications

Beyond Copycat specifically, this work demonstrates a general methodology
for modernizing legacy Al systems. Many symbolic Al systems from the
1980s and 1990s contain hardcoded parameters tuned for specific domains.
Graph-theoretical reformulation offers a pathway to increase their adapt-
ability and theoretical grounding. The approach represents a middle ground
between purely symbolic AI (which risks brittleness through excessive hard-
coding) and purely statistical AT (which risks opacity through learned pa-
rameters). Graph metrics provide structure while remaining adaptive.

The reformulation also suggests bridges between symbolic and neural
approaches. Graph neural networks could learn to compute custom met-
rics for specific domains while maintaining interpretability through graph
visualization. Copycat’s symbolic constraints (objects, bonds, correspon-
dences) could provide inductive biases for neural analogy systems. This
hybrid direction may prove more fruitful than purely symbolic or purely
neural approaches in isolation.

6 Conclusion

This paper has proposed a comprehensive graph-theoretical reformulation
of the Copycat architecture. We identified numerous hardcoded constants
in the original implementation—including bond compatibility factors, sup-
port decay functions, salience weights, and activation thresholds—that lack
principled justification and limit adaptability. For each constant, we pro-
posed a graph metric replacement: structural equivalence for compatibility,
clustering coefficients for local support, betweenness centrality for salience,
resistance distance for slippage, and percolation thresholds for activation.

These replacements provide three key advantages. Theoretically, they
rest on established mathematical frameworks with proven properties and
extensive prior research. Practically, they adapt automatically to problem
structure without requiring manual retuning for new domains. Cognitively,
they align with modern understanding of brain networks and relational cog-
nition.

The reformulation reinterprets both major components of Copycat’s ar-
chitecture. The Slipnet becomes a weighted graph where conceptual depth
emerges from minimum distance to concrete nodes and slippage derives from
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resistance distance between concepts. The Workspace becomes a dynamic
graph where object salience reflects betweenness centrality and structural
support derives from clustering coefficients. Standard graph algorithms can
compute these metrics efficiently for Copycat’s typical graph sizes.

6.1 Future Work

Several directions promise to extend and validate this work:

Implementation and Validation The highest priority is building a pro-
totype graph-based Copycat and empirically testing the hypotheses pro-
posed in Section 5.3. Comparing performance between original and graph-
based versions on extended problem sets would quantify the benefits of
adaptability. Analyzing correlation between graph metrics and behavioral
outcomes (correspondence selection, answer quality) would validate the the-
oretical predictions.

Domain Transfer Testing graph-based Copycat on non-letter-string do-
mains (visual analogies, numerical relationships, abstract concepts) would
demonstrate genuine adaptability. The original hardcoded constants would
require complete retuning for such domains, while graph metrics should
transfer directly. Success in novel domains would provide strong evidence
for the reformulation’s value.

Neuroscience Comparison Comparing Copycat’s graph metrics to brain
imaging data during human analogy-making could test cognitive plausibility.
Do brain regions with high betweenness centrality show increased activation
during analogy tasks? Does clustering in functional connectivity correlate
with successful analogy completion? Such comparisons would ground the
computational model in neural reality.

Hybrid Neural-Symbolic Systems Integrating graph neural networks
to learn custom metrics for specific problem types represents an exciting
direction. Rather than manually specifying betweenness for salience, a
GNN could learn which graph features predict important objects, poten-
tially discovering novel structural patterns. This would combine symbolic
interpretability with neural adaptability.

Meta-Learning Metric Selection Developing meta-learning systems that
automatically discover which graph metrics work best for which problem
characteristics would eliminate remaining parameter choices. The system
could learn from experience that betweenness centrality predicts importance
for spatial problems while eigenvector centrality works better for temporal
problems, adapting its metric selection strategy.
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Extension to Other Cognitive Architectures The methodology de-
veloped here—identifying hardcoded constants and replacing them with
graph metrics—may apply to other symbolic cognitive architectures. Sys-
tems like SOAR, ACT-R, and Companion [2| similarly contain numerous
parameters that could potentially be reformulated graph-theoretically. This
suggests a broader research program of graph-based cognitive architecture
design.

6.2 Closing Perspective

The hardcoded constants in Copycat’s original implementation represented
practical necessities given the computational constraints and theoretical un-
derstanding of the early 1990s. Mitchell and Hofstadter made pragmatic
choices that enabled the system to work, demonstrating fluid analogical rea-
soning for the first time in a computational model. These achievements
deserve recognition.

Three decades later, we can build on this foundation with tools unavail-
able to the original designers. Graph theory has matured into a powerful
analytical framework. Computational resources enable real-time calculation
of complex metrics. Understanding of cognitive neuroscience has deepened,
revealing the brain’s graph-like organization. Modern machine learning of-
fers hybrid symbolic-neural approaches. These advances create opportuni-
ties to refine Copycat’s architecture while preserving its core insights about
fluid cognition.

The graph-theoretical reformulation honors Copycat’s original vision—modeling
analogy-making as parallel constraint satisfaction over structured represen-
tations—while addressing its limitations. By replacing hardcoded heuristics
with principled constructs, we move toward cognitive architectures that are
both theoretically grounded and practically adaptive. This represents not
a rejection of symbolic Al but rather its evolution, incorporating modern
graph theory and network science to build more robust and flexible cogni-
tive models.
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