Adds automated chi^2 testing
This commit is contained in:
107
tests.py
107
tests.py
@ -5,81 +5,44 @@ from copycat import Copycat
|
||||
|
||||
# TODO: update test cases to use entropy
|
||||
|
||||
def pnormaldist(p):
|
||||
table = {
|
||||
0.80: 1.2815,
|
||||
0.90: 1.6448,
|
||||
0.95: 1.9599,
|
||||
0.98: 2.3263,
|
||||
0.99: 2.5758,
|
||||
0.995: 2.8070,
|
||||
0.998: 3.0902,
|
||||
0.999: 3.2905,
|
||||
0.9999: 3.8905,
|
||||
0.99999: 4.4171,
|
||||
0.999999: 4.8916,
|
||||
0.9999999: 5.3267,
|
||||
0.99999999: 5.7307,
|
||||
0.999999999: 6.1094,
|
||||
}
|
||||
return max(v for k, v in table.items() if k <= p)
|
||||
|
||||
|
||||
def lower_bound_on_probability(hits, attempts, confidence=0.95):
|
||||
if attempts == 0:
|
||||
return 0
|
||||
z = pnormaldist(confidence)
|
||||
zsqr = z * z
|
||||
phat = 1.0 * hits / attempts
|
||||
under_sqrt = (phat * (1 - phat) + zsqr / (4 * attempts)) / attempts
|
||||
denominator = (1 + zsqr / attempts)
|
||||
return (phat + zsqr / (2 * attempts) - z * (under_sqrt ** 0.5)) / denominator
|
||||
|
||||
|
||||
def upper_bound_on_probability(hits, attempts, confidence=0.95):
|
||||
misses = attempts - hits
|
||||
return 1.0 - lower_bound_on_probability(misses, attempts, confidence)
|
||||
|
||||
# CHI2 values for n degrees freedom
|
||||
_chiSquared_table = {
|
||||
1:3.841,
|
||||
2:5.991,
|
||||
3:7.815,
|
||||
4:9.488,
|
||||
5:11.071,
|
||||
6:12.592,
|
||||
7:14.067,
|
||||
8:15.507,
|
||||
9:16.919,
|
||||
10:18.307
|
||||
}
|
||||
|
||||
class TestCopycat(unittest.TestCase):
|
||||
|
||||
SignificantPercent = 10
|
||||
|
||||
def setUp(self):
|
||||
self.longMessage = True # new in Python 2.7
|
||||
|
||||
def assertProbabilitiesLookRoughlyLike(self, actual, expected, iterations):
|
||||
significantCount = iterations / TestCopycat.SignificantPercent # The number of times a value must show up to be significant
|
||||
|
||||
actual_count = 0.0 + sum(d['count'] for d in list(actual.values()))
|
||||
expected_count = 0.0 + sum(d['count'] for d in list(expected.values()))
|
||||
self.assertGreater(actual_count, 1)
|
||||
self.assertGreater(expected_count, 1)
|
||||
answerKeys = set(list(actual.keys()) + list(expected.keys()))
|
||||
degreesFreedom = len(answerKeys)
|
||||
chiSquared = 0
|
||||
|
||||
for k in set(list(actual.keys()) + list(expected.keys())):
|
||||
if k not in expected:
|
||||
expected_probability = 0.05
|
||||
get_count = lambda k, d : d[k]['count'] if k in d else 0
|
||||
|
||||
for k in answerKeys:
|
||||
E = get_count(k, expected)
|
||||
O = get_count(k, actual)
|
||||
if E == 0:
|
||||
print('Warning! Expected 0 counts of {}, but got {}'.format(k, O))
|
||||
else:
|
||||
expected_probability = expected[k]['count'] / expected_count
|
||||
'''
|
||||
if k not in expected and actual[k]['count'] >= significantCount:
|
||||
self.fail('Key %s was produced but not expected! %r != %r' % (k, actual, expected))
|
||||
expected_probability =
|
||||
expected_probability = expected[k]['count'] / expected_count
|
||||
'''
|
||||
if k in actual:
|
||||
actual_lo = lower_bound_on_probability(actual[k]['count'], actual_count)
|
||||
actual_hi = upper_bound_on_probability(actual[k]['count'], actual_count)
|
||||
if not (actual_lo <= expected_probability <= actual_hi):
|
||||
print('Failed (%s <= %s <= %s)' % (actual_lo, expected_probability, actual_hi))
|
||||
self.fail('Count ("obviousness" metric) seems way off! %r != %r' % (actual, expected))
|
||||
if abs(actual[k]['avgtemp'] - expected[k]['avgtemp']) >= 10.0 + (10.0 / actual[k]['count']):
|
||||
print('Failed (%s - %s >= %s)' % (actual[k]['avgtemp'], expected[k]['avgtemp'], 10.0 + (10.0 / actual[k]['count'])))
|
||||
self.fail('Temperature ("elegance" metric) seems way off! %r != %r' % (actual, expected))
|
||||
else:
|
||||
actual_hi = upper_bound_on_probability(0, actual_count)
|
||||
if not (0 <= expected_probability <= actual_hi):
|
||||
self.fail('No instances of expected key %s were produced! %r != %r' % (k, actual, expected))
|
||||
chiSquared += (O - E) ** 2 / E
|
||||
|
||||
if chiSquared >= _chiSquared_table[degreesFreedom]:
|
||||
self.fail('Significant different between expected and actual answer distributions: \n' +
|
||||
'Chi2 value: {} with {} degrees of freedom'.format(chiSquared, degreesFreedom))
|
||||
|
||||
def run_testcase(self, initial, modified, target, iterations, expected):
|
||||
print('expected:')
|
||||
@ -90,7 +53,6 @@ class TestCopycat(unittest.TestCase):
|
||||
self.assertEqual(sum(a['count'] for a in list(actual.values())), iterations)
|
||||
self.assertProbabilitiesLookRoughlyLike(actual, expected, iterations)
|
||||
|
||||
'''
|
||||
def test_simple_cases(self):
|
||||
self.run_testcase('abc', 'abd', 'efg', 30,
|
||||
{'dfg': {'avgtemp': 72.37092377767368, 'avgtime': 475.0, 'count': 1},
|
||||
@ -98,10 +60,13 @@ class TestCopycat(unittest.TestCase):
|
||||
'efh': {'avgtemp': 19.381658717913258,
|
||||
'avgtime': 757.1851851851852,
|
||||
'count': 27}})
|
||||
self.run_testcase('abc', 'abd', 'ijk', 30, {
|
||||
'ijl': {'count': 30, 'avgtemp': 20},
|
||||
})
|
||||
'''
|
||||
self.run_testcase('abc', 'abd', 'ijk', 30,
|
||||
{'ijd': {'avgtemp': 14.691978036611559, 'avgtime': 453.0, 'count': 1},
|
||||
'ijl': {'avgtemp': 22.344023091153964,
|
||||
'avgtime': 742.1428571428571,
|
||||
'count': 28},
|
||||
'jjk': {'avgtemp': 11.233344554288019, 'avgtime': 595.0, 'count': 1}})
|
||||
|
||||
|
||||
def test_abc_xyz(self):
|
||||
self.run_testcase('abc', 'abd', 'xyz', 100,
|
||||
@ -132,7 +97,6 @@ class TestCopycat(unittest.TestCase):
|
||||
'count': 44},
|
||||
'jjkk': {'avgtemp': 75.76606718990365, 'avgtime': 925.0, 'count': 2}})
|
||||
|
||||
'''
|
||||
def test_mrrjjj(self):
|
||||
self.run_testcase('abc', 'abd', 'mrrjjj', 30,
|
||||
{'drrjjj': {'avgtemp': 47.3961, 'avgtime': 1538.0, 'count': 1},
|
||||
@ -144,7 +108,6 @@ class TestCopycat(unittest.TestCase):
|
||||
'mrrkkk': {'avgtemp': 43.6931,
|
||||
'avgtime': 2251.4615,
|
||||
'count': 13}})
|
||||
'''
|
||||
|
||||
'''
|
||||
Below are examples of improvements that could be made to copycat.
|
||||
|
||||
Reference in New Issue
Block a user