Updates paper draft for final chi2 table

This commit is contained in:
LSaldyt
2017-12-09 15:14:53 -07:00
parent 7eb7378ed3
commit a8b9675d2f
7 changed files with 24 additions and 15 deletions

28
papers/resources/adj.l Normal file
View File

@ -0,0 +1,28 @@
(defun get-temperature-adjusted-probability (prob &aux low-prob-factor
result)
; This function is a filter: it inputs a value (from 0 to 100) and returns
; a probability (from 0 - 1) based on that value and the temperature. When
; the temperature is 0, the result is (/ value 100), but at higher
; temperatures, values below 50 get raised and values above 50 get lowered
; as a function of temperature.
; I think this whole formula could probably be simplified.
(setq result
(cond ((= prob 0) 0)
((<= prob .5)
(setq low-prob-factor (max 1 (truncate (abs (log prob 10)))))
(min (+ prob
(* (/ (- 10 (sqrt (fake-reciprocal *temperature*)))
100)
(- (expt 10 (- (1- low-prob-factor))) prob)))
.5))
((= prob .5) .5)
((> prob .5)
(max (- 1
(+ (- 1 prob)
(* (/ (- 10 (sqrt (fake-reciprocal *temperature*)))
100)
(- 1 (- 1 prob)))))
.5))))
result)

21
papers/resources/best.py Normal file
View File

@ -0,0 +1,21 @@
def _working_best(temp, prob):
s = .5 # convergence
r = 1.05 # power
u = prob ** r if prob < .5 else prob ** (1/r)
return _weighted(temp, prob, s, u)
def _soft_best(temp, prob):
s = .5 # convergence
r = 1.05 # power
u = prob ** r if prob < .5 else prob ** (1/r)
return _weighted(temp, prob, s, u)
def _parameterized_best(temp, prob):
alpha = 5
beta = 1
s = .5
s = (alpha * prob + beta * s) / (alpha + beta)
r = 1.05
u = prob ** r if prob < .5 else prob ** (1/r)
return _weighted(temp, prob, s, u)

View File

@ -0,0 +1,12 @@
import math
def _entropy(temp, prob):
if prob == 0 or prob == 0.5 or temp == 0:
return prob
if prob < 0.5:
return 1.0 - _original(temp, 1.0 - prob)
coldness = 100.0 - temp
a = math.sqrt(coldness)
c = (10 - a) / 100
f = (c + 1) * prob
return -f * math.log2(f)

BIN
papers/resources/final.pdf Normal file

Binary file not shown.

View File

@ -0,0 +1,12 @@
import math
def _original(temp, prob):
if prob == 0 or prob == 0.5 or temp == 0:
return prob
if prob < 0.5:
return 1.0 - _original(temp, 1.0 - prob)
coldness = 100.0 - temp
a = math.sqrt(coldness)
c = (10 - a) / 100
f = (c + 1) * prob
return max(f, 0.5)

View File

@ -0,0 +1,28 @@
def _weighted(temp, prob, s, u):
weighted = (temp / 100) * s + ((100 - temp) / 100) * u
return weighted
def _weighted_inverse(temp, prob):
iprob = 1 - prob
return _weighted(temp, prob, iprob, prob)
# Uses .5 instead of 1-prob
def _fifty_converge(temp, prob):
return _weighted(temp, prob, .5, prob)
# Curves to the average of the (1-p) and .5
def _soft_curve(temp, prob):
return min(1, _weighted(temp, prob, (1.5-prob)/2, prob))
# Curves to the weighted average of the (1-p) and .5
def _weighted_soft_curve(temp, prob):
weight = 100
gamma = .5 # convergance value
alpha = 1 # gamma weight
beta = 3 # iprob weight
curved = min(1,
(temp / weight) *
((alpha * gamma + beta * (1 - prob)) /
(alpha + beta)) +
((weight - temp) / weight) * prob)
return curved