Adds probability difference to copycat/statistics
This commit is contained in:
@ -24,17 +24,18 @@ _ptable = {
|
||||
16:26.3
|
||||
}
|
||||
|
||||
|
||||
_get_count = lambda k, d : d[k]['count'] if k in d else 0
|
||||
|
||||
def g_value(actual, expected):
|
||||
# G = 2 * sum(Oi * ln(Oi/Ei))
|
||||
answerKeys = set(list(actual.keys()) + list(expected.keys()))
|
||||
degreesFreedom = len(answerKeys)
|
||||
G = 0
|
||||
|
||||
get_count = lambda k, d : d[k]['count'] if k in d else 0
|
||||
|
||||
for k in answerKeys:
|
||||
E = get_count(k, expected)
|
||||
O = get_count(k, actual)
|
||||
E = _get_count(k, expected)
|
||||
O = _get_count(k, actual)
|
||||
if E == 0:
|
||||
print(' Warning! Expected 0 counts of {}, but got {}'.format(k, O))
|
||||
elif O == 0:
|
||||
@ -49,17 +50,39 @@ def chi_value(actual, expected):
|
||||
degreesFreedom = len(answerKeys)
|
||||
chiSquared = 0
|
||||
|
||||
get_count = lambda k, d : d[k]['count'] if k in d else 0
|
||||
|
||||
for k in answerKeys:
|
||||
E = get_count(k, expected)
|
||||
O = get_count(k, actual)
|
||||
E = _get_count(k, expected)
|
||||
O = _get_count(k, actual)
|
||||
if E == 0:
|
||||
print(' Warning! Expected 0 counts of {}, but got {}'.format(k, O))
|
||||
else:
|
||||
chiSquared += (O - E) ** 2 / E
|
||||
return degreesFreedom, chiSquared
|
||||
|
||||
def probability_difference(actual, expected):
|
||||
actualC = 0
|
||||
expectedC = 0
|
||||
|
||||
for k in set(list(actual.keys()) + list(expected.keys())):
|
||||
expectedC += _get_count(k, expected)
|
||||
actualC += _get_count(k, actual)
|
||||
|
||||
p = 0
|
||||
|
||||
Et = 0
|
||||
Ot = 0
|
||||
|
||||
for k in set(list(actual.keys()) + list(expected.keys())):
|
||||
E = _get_count(k, expected)
|
||||
O = _get_count(k, actual)
|
||||
Ep = E / expectedC
|
||||
Op = O / actualC
|
||||
p += abs(Ep - Op)
|
||||
|
||||
p /= 2 # P is between 0 and 2 -> P is between 0 and 1
|
||||
|
||||
return p
|
||||
|
||||
def dist_test(actual, expected, calculation):
|
||||
df, p = calculation(actual, expected)
|
||||
if df not in _ptable:
|
||||
@ -67,14 +90,17 @@ def dist_test(actual, expected, calculation):
|
||||
' Please look up the value and add it to the table in copycat/statistics.py'.format(df))
|
||||
return (p < _ptable[df])
|
||||
|
||||
def cross_formula_table(actualDict, expectedDict, calculation):
|
||||
def cross_formula_table(actualDict, expectedDict, calculation, probs=False):
|
||||
data = dict()
|
||||
for ka, actual in actualDict.items():
|
||||
for ke, expected in expectedDict.items():
|
||||
if probs:
|
||||
data[(ka, ke)] = probability_difference(actual, expected)
|
||||
else:
|
||||
data[(ka, ke)] = dist_test(actual, expected, calculation)
|
||||
return data
|
||||
|
||||
def cross_table(problemSets, calculation=g_value):
|
||||
def cross_table(problemSets, calculation=g_value, probs=False):
|
||||
table = defaultdict(dict)
|
||||
for i, (a, problemSetA) in enumerate(problemSets):
|
||||
for b, problemSetB in problemSets[i + 1:]:
|
||||
@ -89,7 +115,7 @@ def cross_table(problemSets, calculation=g_value):
|
||||
problemA.modified,
|
||||
problemA.target)][(a, b)] = (
|
||||
cross_formula_table(
|
||||
answersA, answersB, calculation))
|
||||
answersA, answersB, calculation, probs))
|
||||
return table
|
||||
|
||||
def iso_chi_squared(actualDict, expectedDict):
|
||||
|
||||
@ -19,7 +19,7 @@ def main(args):
|
||||
pSet = pickle.load(infile)
|
||||
branchProblemSets[filename] = pSet
|
||||
problemSets.append((filename, pSet))
|
||||
crossTable = cross_table(problemSets)
|
||||
crossTable = cross_table(problemSets, probs=True)
|
||||
key_sorted_items = lambda d : sorted(d.items(), key=lambda t:t[0])
|
||||
|
||||
tableItems = key_sorted_items(crossTable)
|
||||
|
||||
Reference in New Issue
Block a user