Add comprehensive centrality analysis to slipnet study
Key finding: Eccentricity is the only metric significantly correlated with conceptual depth (r=-0.380, p=0.029). Local centrality measures (degree, betweenness, closeness) show no significant correlation. New files: - compute_centrality.py: Computes 8 graph metrics - centrality_comparison.png: Visual comparison of all metrics - Updated paper with full analysis Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
86
slipnet_analysis/centrality_results.json
Normal file
86
slipnet_analysis/centrality_results.json
Normal file
@ -0,0 +1,86 @@
|
||||
{
|
||||
"analysis_type": "centrality_correlation",
|
||||
"n_nodes": 33,
|
||||
"metrics": [
|
||||
{
|
||||
"name": "Eccentricity",
|
||||
"key": "eccentricity",
|
||||
"pearson_r": -0.3796,
|
||||
"pearson_p": 0.029349,
|
||||
"spearman_r": -0.2988,
|
||||
"spearman_p": 0.091181,
|
||||
"r_squared": 0.1441,
|
||||
"significant": true
|
||||
},
|
||||
{
|
||||
"name": "Closeness Centrality",
|
||||
"key": "closeness",
|
||||
"pearson_r": -0.2699,
|
||||
"pearson_p": 0.128801,
|
||||
"spearman_r": -0.1804,
|
||||
"spearman_p": 0.315126,
|
||||
"r_squared": 0.0728,
|
||||
"significant": false
|
||||
},
|
||||
{
|
||||
"name": "Degree Centrality",
|
||||
"key": "degree",
|
||||
"pearson_r": -0.2643,
|
||||
"pearson_p": 0.137147,
|
||||
"spearman_r": -0.2362,
|
||||
"spearman_p": 0.18565,
|
||||
"r_squared": 0.0699,
|
||||
"significant": false
|
||||
},
|
||||
{
|
||||
"name": "PageRank",
|
||||
"key": "pagerank",
|
||||
"pearson_r": -0.257,
|
||||
"pearson_p": 0.148771,
|
||||
"spearman_r": -0.1908,
|
||||
"spearman_p": 0.287516,
|
||||
"r_squared": 0.0661,
|
||||
"significant": false
|
||||
},
|
||||
{
|
||||
"name": "Clustering Coefficient",
|
||||
"key": "clustering",
|
||||
"pearson_r": -0.2191,
|
||||
"pearson_p": 0.2205,
|
||||
"spearman_r": -0.2761,
|
||||
"spearman_p": 0.119934,
|
||||
"r_squared": 0.048,
|
||||
"significant": false
|
||||
},
|
||||
{
|
||||
"name": "Betweenness Centrality",
|
||||
"key": "betweenness",
|
||||
"pearson_r": -0.1716,
|
||||
"pearson_p": 0.339655,
|
||||
"spearman_r": -0.0801,
|
||||
"spearman_p": 0.657858,
|
||||
"r_squared": 0.0294,
|
||||
"significant": false
|
||||
},
|
||||
{
|
||||
"name": "Eigenvector Centrality",
|
||||
"key": "eigenvector",
|
||||
"pearson_r": -0.1482,
|
||||
"pearson_p": 0.410425,
|
||||
"spearman_r": -0.2367,
|
||||
"spearman_p": 0.184728,
|
||||
"r_squared": 0.022,
|
||||
"significant": false
|
||||
},
|
||||
{
|
||||
"name": "Avg Neighbor Degree",
|
||||
"key": "avg_neighbor_degree",
|
||||
"pearson_r": 0.0517,
|
||||
"pearson_p": 0.775231,
|
||||
"spearman_r": -0.3006,
|
||||
"spearman_p": 0.089172,
|
||||
"r_squared": 0.0027,
|
||||
"significant": false
|
||||
}
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user