Adds additional adjustment formulas

This commit is contained in:
LSaldyt
2017-10-15 14:38:48 -06:00
parent 0ba421029c
commit 6985dedb18
2 changed files with 25 additions and 14 deletions

View File

@ -68,12 +68,14 @@ class Copycat(object):
def run(self, initial, modified, target, iterations):
self.workspace.resetWithStrings(initial, modified, target)
#self.temperature.useAdj('original')
self.temperature.useAdj('original')
#self.temperature.useAdj('entropy')
#self.temperature.useAdj('inverse') # 100 weight
#self.temperature.useAdj('fifty_converge')
#self.temperature.useAdj('soft')
self.temperature.useAdj('weighted_soft')
#self.temperature.useAdj('weighted_soft')
#self.temperature.useAdj('alt_fifty')
#self.temperature.useAdj('average_alt')
answers = {}
for i in range(iterations):

View File

@ -24,31 +24,38 @@ def _entropy(temp, prob):
f = (c + 1) * prob
return -f * math.log2(f)
def _weighted(temp, prob, s, u):
weighted = (temp / 100) * s + ((100 - temp) / 100) * u
return weighted
def _weighted_inverse(temp, prob):
iprob = 1 - prob
weight = 100
inverse_weighted = (temp / weight) * iprob + ((weight - temp) / weight) * prob
return inverse_weighted
return _weighted(temp, prob, iprob, prob)
def _fifty_converge(temp, prob): # Uses .5 instead of 1-prob
weight = 100
curved = (temp / weight) * .5 + ((weight - temp) / weight) * prob
return curved
return _weighted(temp, prob, .5, prob)
def _soft_curve(temp, prob): # Curves to the average of the (1-p) and .5
iprob = 1 - prob
weight = 100
curved = min(1, (temp / weight) * ((1.5 - prob) / 2) + ((weight - temp) / weight) * prob)
return curved
return min(1, _weighted(temp, prob, (1.5-prob)/2, prob))
def _weighted_soft_curve(temp, prob): # Curves to the weighted average of the (1-p) and .5
weight = 100 # Don't change me in this context
weight = 100
gamma = .5 # convergance value
alpha = 1 # gamma weight
beta = 3 # iprob weight
curved = min(1, (temp / weight) * ((alpha * gamma + beta * (1 - prob)) / (alpha + beta)) + ((weight - temp) / weight) * prob)
return curved
def _alt_fifty(temp, prob):
s = .5
u = prob ** 2 if prob < .5 else math.sqrt(prob)
return _weighted(temp, prob, s, u)
def _averaged_alt(temp, prob):
s = (1.5 - prob)/2
u = prob ** 2 if prob < .5 else math.sqrt(prob)
return _weighted(temp, prob, s, u)
class Temperature(object):
def __init__(self):
self.reset()
@ -59,7 +66,9 @@ class Temperature(object):
'inverse' : _weighted_inverse,
'fifty_converge' : _fifty_converge,
'soft' : _soft_curve,
'weighted_soft' : _weighted_soft_curve}
'weighted_soft' : _weighted_soft_curve,
'alt_fifty' : _alt_fifty,
'average_alt' : _averaged_alt}
def reset(self):
self.actual_value = 100.0