Add slipnet analysis: depth vs topology correlation study

Analysis shows no significant correlation between conceptual depth
and hop distance to letter nodes (r=0.281, p=0.113). Includes
Python scripts, visualizations, and LaTeX paper.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Alex Linhares
2026-02-01 20:58:15 +00:00
parent 06a42cc746
commit 50b6fbdc27
14 changed files with 4209 additions and 0 deletions

View File

@ -0,0 +1,108 @@
"""
Plot correlation between minimum hops to letter nodes and conceptual depth.
"""
import json
import matplotlib
matplotlib.use('Agg') # Non-interactive backend
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
def load_slipnet(filepath):
with open(filepath, 'r') as f:
return json.load(f)
def main():
filepath = r'C:\Users\alexa\copycat\slipnet_analysis\slipnet.json'
data = load_slipnet(filepath)
# Extract data points (excluding letter nodes themselves)
names = []
depths = []
hops = []
is_unreachable = [] # Track which nodes are unreachable
for node in data['nodes']:
name = node['name']
depth = node['conceptualDepth']
path_info = node.get('minPathToLetter', {})
hop_count = path_info.get('hops')
nearest = path_info.get('nearestLetter')
# Skip letter nodes (hops 0)
if hop_count is not None and hop_count > 0:
names.append(name)
depths.append(depth)
hops.append(hop_count)
# Unreachable nodes have no nearestLetter
is_unreachable.append(nearest is None)
# Convert to numpy arrays
depths = np.array(depths)
hops = np.array(hops)
is_unreachable = np.array(is_unreachable)
# Compute correlation
correlation, p_value = stats.pearsonr(depths, hops)
spearman_corr, spearman_p = stats.spearmanr(depths, hops)
# Create the plot
fig, ax = plt.subplots(figsize=(10, 8))
# Scatter plot with jitter for overlapping points
jitter = np.random.normal(0, 0.08, len(hops))
# Plot reachable nodes in blue
reachable_mask = ~is_unreachable
ax.scatter(depths[reachable_mask], hops[reachable_mask] + jitter[reachable_mask],
alpha=0.7, s=100, c='steelblue', edgecolors='navy', label='Reachable')
# Plot unreachable nodes in red
if np.any(is_unreachable):
ax.scatter(depths[is_unreachable], hops[is_unreachable] + jitter[is_unreachable],
alpha=0.7, s=100, c='crimson', edgecolors='darkred', label='Unreachable (2×max)')
# Add labels to each point
for i, name in enumerate(names):
ax.annotate(name, (depths[i], hops[i] + jitter[i]), fontsize=8, alpha=0.8,
xytext=(5, 5), textcoords='offset points')
# Add trend line
z = np.polyfit(depths, hops, 1)
p = np.poly1d(z)
x_line = np.linspace(min(depths), max(depths), 100)
ax.plot(x_line, p(x_line), "r--", alpha=0.8, label=f'Linear fit (y = {z[0]:.3f}x + {z[1]:.2f})')
# Labels and title
ax.set_xlabel('Conceptual Depth', fontsize=12)
ax.set_ylabel('Minimum Hops to Letter Node (Erdos-style)', fontsize=12)
ax.set_title('Correlation: Conceptual Depth vs Hops to Nearest Letter\n'
f'Pearson r = {correlation:.3f} (p = {p_value:.4f}), '
f'Spearman rho = {spearman_corr:.3f} (p = {spearman_p:.4f})',
fontsize=11)
ax.legend(loc='upper left')
ax.grid(True, alpha=0.3)
max_hops = int(max(hops))
ax.set_yticks(range(1, max_hops + 1))
ax.set_ylim(0.5, max_hops + 0.5)
# Print statistics
print(f"Number of nodes with paths (excluding letters): {len(names)}")
print(f"\nPearson correlation: r = {correlation:.4f}, p-value = {p_value:.6f}")
print(f"Spearman correlation: rho = {spearman_corr:.4f}, p-value = {spearman_p:.6f}")
print(f"\nLinear regression: hops = {z[0]:.4f} * depth + {z[1]:.4f}")
print("\nData points:")
print(f"{'Node':<30} {'Depth':<10} {'Hops':<10}")
print("-" * 50)
for name, depth, hop in sorted(zip(names, depths, hops), key=lambda x: (x[2], x[1])):
print(f"{name:<30} {depth:<10.1f} {hop:<10}")
plt.tight_layout()
plt.savefig(r'C:\Users\alexa\copycat\slipnet_analysis\depth_hops_correlation.png', dpi=150)
print(f"\nPlot saved to: C:\\Users\\alexa\\copycat\\slipnet_analysis\\depth_hops_correlation.png")
if __name__ == '__main__':
main()